Cargando…

Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies

Two-dimensional sheet-like supramolecules have attracted much attention from the viewpoints of their potential application as functional (nano)materials due to unique physical and chemical properties. One of the supramolecular sheet-like nanostructures in nature is visible in the self-assemblies of...

Descripción completa

Detalles Bibliográficos
Autores principales: Shoji, Sunao, Ogawa, Tetsuya, Matsubara, Shogo, Tamiaki, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773735/
https://www.ncbi.nlm.nih.gov/pubmed/31575931
http://dx.doi.org/10.1038/s41598-019-50026-1
Descripción
Sumario:Two-dimensional sheet-like supramolecules have attracted much attention from the viewpoints of their potential application as functional (nano)materials due to unique physical and chemical properties. One of the supramolecular sheet-like nanostructures in nature is visible in the self-assemblies of bacteriochlorophyll-c–f pigments inside chlorosomes, which are major components in the antenna systems of photosynthetic green bacteria. Herein, we report artificial chlorosomal supramolecular nanosheets prepared by the self-assembly of a synthetic zinc 3(1)-methoxy-chlorophyll derivative having amide and urea groups in the substituent at the 17-position. The semi-synthetic zinc chlorophyll derivative kinetically formed dimeric species and transformed into more thermodynamically stable chlorosomal J-aggregates in the solid state. The kinetically and thermodynamically formed self-assemblies had particle-like and sheet-like supramolecular nanostructures, respectively. The resulting nanosheets of biomimetic chlorosomal J-aggregates had flat surfaces and well-ordered supramolecular structures. The artificial sheet-like nanomaterial mimicking chlorosomal bacteriochlorophyll-c–f J-aggregates was first constructed by the model molecule, and is potentially useful for various applications including artificial light-harvesting antennas and photosyntheses.