Cargando…
Generation of Synthetic CT Images From MRI for Treatment Planning and Patient Positioning Using a 3-Channel U-Net Trained on Sagittal Images
A novel deep learning architecture was explored to create synthetic CT (MRCT) images that preserve soft tissue contrast necessary for support of patient positioning in Radiation therapy. A U-Net architecture was applied to learn the correspondence between input T1-weighted MRI and spatially aligned...
Autores principales: | Gupta, Dinank, Kim, Michelle, Vineberg, Karen A., Balter, James M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773822/ https://www.ncbi.nlm.nih.gov/pubmed/31608241 http://dx.doi.org/10.3389/fonc.2019.00964 |
Ejemplares similares
-
Image Recovery from Synthetic Noise Artifacts in CT Scans Using Modified U-Net
por: Gunawan, Rudy, et al.
Publicado: (2022) -
SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image
por: Zhang, Xiang, et al.
Publicado: (2022) -
Age estimation by multidetector CT images of the sagittal suture
por: Chiba, Fumiko, et al.
Publicado: (2013) -
Incorporating the synthetic CT image for improving the performance of deformable image registration between planning CT and cone-beam CT
por: Li, Na, et al.
Publicado: (2023) -
Auxiliary Segmentation Method of Osteosarcoma MRI Image Based on Transformer and U-Net
por: Liu, Feng, et al.
Publicado: (2022)