Cargando…

Tuning the Electronic Structure of LaNiO(3) through Alloying with Strontium to Enhance Oxygen Evolution Activity

The perovskite oxide LaNiO(3) is a promising oxygen electrocatalyst for renewable energy storage and conversion technologies. Here, it is shown that strontium substitution for lanthanum in coherently strained, epitaxial LaNiO(3) films (La(1−) (x)Sr(x)NiO(3)) significantly enhances the oxygen evoluti...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jishan, Jia, Endong, Wang, Le, Stoerzinger, Kelsey A., Zhou, Hua, Tang, Chi Sin, Yin, Xinmao, He, Xu, Bousquet, Eric, Bowden, Mark E., Wee, Andrew T. S., Chambers, Scott A., Du, Yingge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774028/
https://www.ncbi.nlm.nih.gov/pubmed/31592141
http://dx.doi.org/10.1002/advs.201901073
Descripción
Sumario:The perovskite oxide LaNiO(3) is a promising oxygen electrocatalyst for renewable energy storage and conversion technologies. Here, it is shown that strontium substitution for lanthanum in coherently strained, epitaxial LaNiO(3) films (La(1−) (x)Sr(x)NiO(3)) significantly enhances the oxygen evolution reaction (OER) activity, resulting in performance at x = 0.5 comparable to the state‐of‐the‐art catalyst Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3−) (δ). By combining X‐ray photoemission and X‐ray absorption spectroscopies with density functional theory, it is shown that an upward energy shift of the O 2p band relative to the Fermi level occurs with increasing x in La(1−) (x)Sr(x)NiO(3). This alloying step strengthens Ni 3d–O 2p hybridization and decreases the charge transfer energy, which in turn accounts for the enhanced OER activity.