Cargando…

Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity

The demand for high‐performance absorbers in the microwave frequencies, which can reduce undesirable radiation that interferes with electronic system operation, has attracted increasing interest in recent years. However, most devices implemented so far are opaque, limiting their use in optical appli...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Heyan, Zhang, Yilei, Ji, Chengang, Zhang, Cheng, Liu, Dong, Zhang, Zhong, Lu, Zhengang, Tan, Jiubin, Guo, L. Jay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774038/
https://www.ncbi.nlm.nih.gov/pubmed/31592425
http://dx.doi.org/10.1002/advs.201901320
Descripción
Sumario:The demand for high‐performance absorbers in the microwave frequencies, which can reduce undesirable radiation that interferes with electronic system operation, has attracted increasing interest in recent years. However, most devices implemented so far are opaque, limiting their use in optical applications that require high visible transparency. Here, a scheme is demonstrated for microwave absorbers featuring high transparency in the visible range, near‐unity absorption (≈99.5% absorption at 13.75 GHz with 3.6 GHz effective bandwidth) in the Ku‐band, and hence excellent electromagnetic interference shielding performance (≈26 dB). The device is based on an asymmetric Fabry–Pérot cavity, which incorporates a monolayer graphene and a transparent ultrathin (8 nm) doped silver layer as absorber and reflector, and fused silica as the middle dielectric layer. Guided by derived formulism, this asymmetric cavity is demonstrated with microwaves near‐perfectly and exclusively absorbs in the ultrathin graphene film. The peak absorption frequency of the cavity can be readily tuned by simply changing the thickness of the dielectric spacer. The approach provides a viable solution for a new type of microwave absorber with high visible transmittance, paving the way towards applications in the area of optics.