Cargando…

Contrasting Response of Precipitation to Aerosol Perturbation in the Tropics and Extratropics Explained by Energy Budget Considerations

Precipitation plays a crucial role in the Earth's energy balance, the water cycle, and the global atmospheric circulation. Aerosols, by direct interaction with radiation and by serving as cloud condensation nuclei, may affect clouds and rain formation. This effect can be examined in terms of en...

Descripción completa

Detalles Bibliográficos
Autores principales: Dagan, Guy, Stier, Philip, Watson‐Parris, Duncan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774305/
https://www.ncbi.nlm.nih.gov/pubmed/31598021
http://dx.doi.org/10.1029/2019GL083479
Descripción
Sumario:Precipitation plays a crucial role in the Earth's energy balance, the water cycle, and the global atmospheric circulation. Aerosols, by direct interaction with radiation and by serving as cloud condensation nuclei, may affect clouds and rain formation. This effect can be examined in terms of energetic constraints, that is, any aerosol‐driven diabatic heating/cooling of the atmosphere will have to be balanced by changes in precipitation, radiative fluxes, or divergence of dry static energy. Using an aqua‐planet general circulation model (GCM), we show that tropical and extratropical precipitation have contrasting responses to aerosol perturbations. This behavior can be explained by contrasting ability of the atmosphere to diverge excess dry static energy in the two different regions. It is shown that atmospheric heating in the tropics leads to large‐scale thermally driven circulation and a large increase in precipitation, while the excess energy from heating in the extratropics is constrained due to the effect of the Coriolis force, causing the precipitation to decrease.