Cargando…
Comparative Theoretical Studies on a Series of Novel Energetic Salts Composed of 4,8-Dihydrodifurazano[3,4-b,e]pyrazine-based Anions and Ammonium-based Cations
4,8-Dihydrodifurazano[3,4-b,e]pyrazine (DFP) is one kind of parent compound for the synthesis of various promising difurazanopyrazine derivatives. In this paper, eleven series of energetic salts composed of 4,8-dihydrodifurazano[3,4-b,e]pyrazine-based anions and ammonium-based cations were designed....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774342/ https://www.ncbi.nlm.nih.gov/pubmed/31487829 http://dx.doi.org/10.3390/molecules24183213 |
Sumario: | 4,8-Dihydrodifurazano[3,4-b,e]pyrazine (DFP) is one kind of parent compound for the synthesis of various promising difurazanopyrazine derivatives. In this paper, eleven series of energetic salts composed of 4,8-dihydrodifurazano[3,4-b,e]pyrazine-based anions and ammonium-based cations were designed. Their densities, heats of formation, energetic properties, impact sensitivity, and thermodynamics of formation were studied and compared based on density functional theory and volume-based thermodynamics method. Results show that ammonium and hydroxylammonium salts exhibit higher densities and more excellent detonation performance than guanidinium and triaminoguanidinium salts. Therein, the substitution with electron-withdrawing groups (–NO(2), –CH(2)NF(2), –CH(2)ONO(2), –C(NO(2))(3), –CH(2)N(3)) contributes to enhancing the densities, heats of formation, and detonation properties of the title salts, and the substitution of –C(NO(2))(3) features the best performance. Incorporating N–O oxidation bond to difurazano[3,4-b,e]pyrazine anion gives a rise to the detonation performance of the title salts, while increasing their impact sensitivity meanwhile. Importantly, triaminoguanidinium 4,8-dihydrodifurazano[3,4-b,e]pyrazine (J4) has been successfully synthesized. The experimentally determined density and H(50) value of J4 are 1.602 g/cm(3) and higher than 112 cm, which are consistent with theoretical values, supporting the reliability of calculation methods. J4 proves to be a thermally stable and energetic explosive with decomposition peak temperature of 216.7 °C, detonation velocity 7732 m/s, and detonation pressure 25.42 GPa, respectively. These results confirm that the derivative work in furazanopyrazine compounds is an effective strategy to design and screen out potential candidates for high-performance energetic salts. |
---|