Cargando…
A tissue-engineered scale model of the heart ventricle
Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myo...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774355/ https://www.ncbi.nlm.nih.gov/pubmed/31015723 http://dx.doi.org/10.1038/s41551-018-0271-5 |
_version_ | 1783456068629692416 |
---|---|
author | MacQueen, Luke A. Sheehy, Sean P. Chantre, Christophe O. Zimmerman, John F. Pasqualini, Franceso S. Liu, Xujie Goss, Josue A. Campbell, Patrick H. Gonzalez, Grant M. Park, Sung-Jin Capulli, Andrew K. Ferrier, John P. Kosar, T. Fettah Mahadevan, L. Pu, William T. Parker, Kevin Kit |
author_facet | MacQueen, Luke A. Sheehy, Sean P. Chantre, Christophe O. Zimmerman, John F. Pasqualini, Franceso S. Liu, Xujie Goss, Josue A. Campbell, Patrick H. Gonzalez, Grant M. Park, Sung-Jin Capulli, Andrew K. Ferrier, John P. Kosar, T. Fettah Mahadevan, L. Pu, William T. Parker, Kevin Kit |
author_sort | MacQueen, Luke A. |
collection | PubMed |
description | Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 μL (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50–250 times smaller and 10(4)–10(8) times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure/volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings. |
format | Online Article Text |
id | pubmed-6774355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67743552019-10-02 A tissue-engineered scale model of the heart ventricle MacQueen, Luke A. Sheehy, Sean P. Chantre, Christophe O. Zimmerman, John F. Pasqualini, Franceso S. Liu, Xujie Goss, Josue A. Campbell, Patrick H. Gonzalez, Grant M. Park, Sung-Jin Capulli, Andrew K. Ferrier, John P. Kosar, T. Fettah Mahadevan, L. Pu, William T. Parker, Kevin Kit Nat Biomed Eng Article Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 μL (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50–250 times smaller and 10(4)–10(8) times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure/volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings. 2018-07-23 2018-12 /pmc/articles/PMC6774355/ /pubmed/31015723 http://dx.doi.org/10.1038/s41551-018-0271-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article MacQueen, Luke A. Sheehy, Sean P. Chantre, Christophe O. Zimmerman, John F. Pasqualini, Franceso S. Liu, Xujie Goss, Josue A. Campbell, Patrick H. Gonzalez, Grant M. Park, Sung-Jin Capulli, Andrew K. Ferrier, John P. Kosar, T. Fettah Mahadevan, L. Pu, William T. Parker, Kevin Kit A tissue-engineered scale model of the heart ventricle |
title | A tissue-engineered scale model of the heart ventricle |
title_full | A tissue-engineered scale model of the heart ventricle |
title_fullStr | A tissue-engineered scale model of the heart ventricle |
title_full_unstemmed | A tissue-engineered scale model of the heart ventricle |
title_short | A tissue-engineered scale model of the heart ventricle |
title_sort | tissue-engineered scale model of the heart ventricle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774355/ https://www.ncbi.nlm.nih.gov/pubmed/31015723 http://dx.doi.org/10.1038/s41551-018-0271-5 |
work_keys_str_mv | AT macqueenlukea atissueengineeredscalemodeloftheheartventricle AT sheehyseanp atissueengineeredscalemodeloftheheartventricle AT chantrechristopheo atissueengineeredscalemodeloftheheartventricle AT zimmermanjohnf atissueengineeredscalemodeloftheheartventricle AT pasqualinifrancesos atissueengineeredscalemodeloftheheartventricle AT liuxujie atissueengineeredscalemodeloftheheartventricle AT gossjosuea atissueengineeredscalemodeloftheheartventricle AT campbellpatrickh atissueengineeredscalemodeloftheheartventricle AT gonzalezgrantm atissueengineeredscalemodeloftheheartventricle AT parksungjin atissueengineeredscalemodeloftheheartventricle AT capulliandrewk atissueengineeredscalemodeloftheheartventricle AT ferrierjohnp atissueengineeredscalemodeloftheheartventricle AT kosartfettah atissueengineeredscalemodeloftheheartventricle AT mahadevanl atissueengineeredscalemodeloftheheartventricle AT puwilliamt atissueengineeredscalemodeloftheheartventricle AT parkerkevinkit atissueengineeredscalemodeloftheheartventricle AT macqueenlukea tissueengineeredscalemodeloftheheartventricle AT sheehyseanp tissueengineeredscalemodeloftheheartventricle AT chantrechristopheo tissueengineeredscalemodeloftheheartventricle AT zimmermanjohnf tissueengineeredscalemodeloftheheartventricle AT pasqualinifrancesos tissueengineeredscalemodeloftheheartventricle AT liuxujie tissueengineeredscalemodeloftheheartventricle AT gossjosuea tissueengineeredscalemodeloftheheartventricle AT campbellpatrickh tissueengineeredscalemodeloftheheartventricle AT gonzalezgrantm tissueengineeredscalemodeloftheheartventricle AT parksungjin tissueengineeredscalemodeloftheheartventricle AT capulliandrewk tissueengineeredscalemodeloftheheartventricle AT ferrierjohnp tissueengineeredscalemodeloftheheartventricle AT kosartfettah tissueengineeredscalemodeloftheheartventricle AT mahadevanl tissueengineeredscalemodeloftheheartventricle AT puwilliamt tissueengineeredscalemodeloftheheartventricle AT parkerkevinkit tissueengineeredscalemodeloftheheartventricle |