Cargando…

A tissue-engineered scale model of the heart ventricle

Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myo...

Descripción completa

Detalles Bibliográficos
Autores principales: MacQueen, Luke A., Sheehy, Sean P., Chantre, Christophe O., Zimmerman, John F., Pasqualini, Franceso S., Liu, Xujie, Goss, Josue A., Campbell, Patrick H., Gonzalez, Grant M., Park, Sung-Jin, Capulli, Andrew K., Ferrier, John P., Kosar, T. Fettah, Mahadevan, L., Pu, William T., Parker, Kevin Kit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774355/
https://www.ncbi.nlm.nih.gov/pubmed/31015723
http://dx.doi.org/10.1038/s41551-018-0271-5
_version_ 1783456068629692416
author MacQueen, Luke A.
Sheehy, Sean P.
Chantre, Christophe O.
Zimmerman, John F.
Pasqualini, Franceso S.
Liu, Xujie
Goss, Josue A.
Campbell, Patrick H.
Gonzalez, Grant M.
Park, Sung-Jin
Capulli, Andrew K.
Ferrier, John P.
Kosar, T. Fettah
Mahadevan, L.
Pu, William T.
Parker, Kevin Kit
author_facet MacQueen, Luke A.
Sheehy, Sean P.
Chantre, Christophe O.
Zimmerman, John F.
Pasqualini, Franceso S.
Liu, Xujie
Goss, Josue A.
Campbell, Patrick H.
Gonzalez, Grant M.
Park, Sung-Jin
Capulli, Andrew K.
Ferrier, John P.
Kosar, T. Fettah
Mahadevan, L.
Pu, William T.
Parker, Kevin Kit
author_sort MacQueen, Luke A.
collection PubMed
description Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 μL (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50–250 times smaller and 10(4)–10(8) times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure/volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings.
format Online
Article
Text
id pubmed-6774355
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-67743552019-10-02 A tissue-engineered scale model of the heart ventricle MacQueen, Luke A. Sheehy, Sean P. Chantre, Christophe O. Zimmerman, John F. Pasqualini, Franceso S. Liu, Xujie Goss, Josue A. Campbell, Patrick H. Gonzalez, Grant M. Park, Sung-Jin Capulli, Andrew K. Ferrier, John P. Kosar, T. Fettah Mahadevan, L. Pu, William T. Parker, Kevin Kit Nat Biomed Eng Article Laboratory studies of the heart use cell and tissue cultures to dissect heart function yet rely on animal models to measure pressure and volume dynamics. Here, we report tissue-engineered scale models of the human left ventricle, made of nanofibrous scaffolds that promote native-like anisotropic myocardial tissue genesis and chamber-level contractile function. Incorporating neonatal rat ventricular myocytes or cardiomyocytes derived from human induced pluripotent stem cells, the tissue-engineered ventricles have a diastolic chamber volume of ~500 μL (comparable to that of the native rat ventricle and approximately 1/250 the size of the human ventricle), and ejection fractions and contractile work 50–250 times smaller and 10(4)–10(8) times smaller than the corresponding values for rodent and human ventricles, respectively. We also measured tissue coverage and alignment, calcium-transient propagation and pressure/volume loops in the presence or absence of test compounds. Moreover, we describe an instrumented bioreactor with ventricular-assist capabilities, and provide a proof-of-concept disease model of structural arrhythmia. The model ventricles can be evaluated with the same assays used in animal models and in clinical settings. 2018-07-23 2018-12 /pmc/articles/PMC6774355/ /pubmed/31015723 http://dx.doi.org/10.1038/s41551-018-0271-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
MacQueen, Luke A.
Sheehy, Sean P.
Chantre, Christophe O.
Zimmerman, John F.
Pasqualini, Franceso S.
Liu, Xujie
Goss, Josue A.
Campbell, Patrick H.
Gonzalez, Grant M.
Park, Sung-Jin
Capulli, Andrew K.
Ferrier, John P.
Kosar, T. Fettah
Mahadevan, L.
Pu, William T.
Parker, Kevin Kit
A tissue-engineered scale model of the heart ventricle
title A tissue-engineered scale model of the heart ventricle
title_full A tissue-engineered scale model of the heart ventricle
title_fullStr A tissue-engineered scale model of the heart ventricle
title_full_unstemmed A tissue-engineered scale model of the heart ventricle
title_short A tissue-engineered scale model of the heart ventricle
title_sort tissue-engineered scale model of the heart ventricle
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774355/
https://www.ncbi.nlm.nih.gov/pubmed/31015723
http://dx.doi.org/10.1038/s41551-018-0271-5
work_keys_str_mv AT macqueenlukea atissueengineeredscalemodeloftheheartventricle
AT sheehyseanp atissueengineeredscalemodeloftheheartventricle
AT chantrechristopheo atissueengineeredscalemodeloftheheartventricle
AT zimmermanjohnf atissueengineeredscalemodeloftheheartventricle
AT pasqualinifrancesos atissueengineeredscalemodeloftheheartventricle
AT liuxujie atissueengineeredscalemodeloftheheartventricle
AT gossjosuea atissueengineeredscalemodeloftheheartventricle
AT campbellpatrickh atissueengineeredscalemodeloftheheartventricle
AT gonzalezgrantm atissueengineeredscalemodeloftheheartventricle
AT parksungjin atissueengineeredscalemodeloftheheartventricle
AT capulliandrewk atissueengineeredscalemodeloftheheartventricle
AT ferrierjohnp atissueengineeredscalemodeloftheheartventricle
AT kosartfettah atissueengineeredscalemodeloftheheartventricle
AT mahadevanl atissueengineeredscalemodeloftheheartventricle
AT puwilliamt atissueengineeredscalemodeloftheheartventricle
AT parkerkevinkit atissueengineeredscalemodeloftheheartventricle
AT macqueenlukea tissueengineeredscalemodeloftheheartventricle
AT sheehyseanp tissueengineeredscalemodeloftheheartventricle
AT chantrechristopheo tissueengineeredscalemodeloftheheartventricle
AT zimmermanjohnf tissueengineeredscalemodeloftheheartventricle
AT pasqualinifrancesos tissueengineeredscalemodeloftheheartventricle
AT liuxujie tissueengineeredscalemodeloftheheartventricle
AT gossjosuea tissueengineeredscalemodeloftheheartventricle
AT campbellpatrickh tissueengineeredscalemodeloftheheartventricle
AT gonzalezgrantm tissueengineeredscalemodeloftheheartventricle
AT parksungjin tissueengineeredscalemodeloftheheartventricle
AT capulliandrewk tissueengineeredscalemodeloftheheartventricle
AT ferrierjohnp tissueengineeredscalemodeloftheheartventricle
AT kosartfettah tissueengineeredscalemodeloftheheartventricle
AT mahadevanl tissueengineeredscalemodeloftheheartventricle
AT puwilliamt tissueengineeredscalemodeloftheheartventricle
AT parkerkevinkit tissueengineeredscalemodeloftheheartventricle