Cargando…
A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis
Polyketide synthases assemble diverse natural products with numerous important applications. The thioester intermediates in polyketide assembly are covalently tethered to acyl carrier protein domains of the synthase. Several mechanisms for polyketide chain release are known, contributing to natural...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774797/ https://www.ncbi.nlm.nih.gov/pubmed/31548673 http://dx.doi.org/10.1038/s41557-019-0309-7 |
_version_ | 1783456121869041664 |
---|---|
author | Masschelein, Joleen Sydor, Paulina K. Hobson, Christian Howe, Rhiannon Jones, Cerith Roberts, Douglas M. Ling Yap, Zhong Parkhill, Julian Mahenthiralingam, Eshwar Challis, Gregory L. |
author_facet | Masschelein, Joleen Sydor, Paulina K. Hobson, Christian Howe, Rhiannon Jones, Cerith Roberts, Douglas M. Ling Yap, Zhong Parkhill, Julian Mahenthiralingam, Eshwar Challis, Gregory L. |
author_sort | Masschelein, Joleen |
collection | PubMed |
description | Polyketide synthases assemble diverse natural products with numerous important applications. The thioester intermediates in polyketide assembly are covalently tethered to acyl carrier protein domains of the synthase. Several mechanisms for polyketide chain release are known, contributing to natural product structural diversification. Here we report a dual transacylation mechanism for chain release from the enacyloxin polyketide synthase, which assembles an antibiotic with promising activity against Acinetobacter baumannii. A non-elongating ketosynthase domain transfers the polyketide chain from the final acyl carrier protein domain of the synthase to a separate carrier protein and a nonribosomal peptide synthetase condensation domain condenses it with (1S, 3R, 4S)-3, 4-dihydroxycyclohexane carboxylic acid. Molecular dissection of this process reveals that non-elongating ketosynthase domain-mediated transacylation circumvents the inability of the condensation domain to recognize the acyl carrier protein domain. Several 3, 4-dihydroxycyclohexane carboxylic acid analogues can be employed for chain release, suggesting a promising strategy for producing enacyloxin analogues. |
format | Online Article Text |
id | pubmed-6774797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67747972020-03-23 A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis Masschelein, Joleen Sydor, Paulina K. Hobson, Christian Howe, Rhiannon Jones, Cerith Roberts, Douglas M. Ling Yap, Zhong Parkhill, Julian Mahenthiralingam, Eshwar Challis, Gregory L. Nat Chem Article Polyketide synthases assemble diverse natural products with numerous important applications. The thioester intermediates in polyketide assembly are covalently tethered to acyl carrier protein domains of the synthase. Several mechanisms for polyketide chain release are known, contributing to natural product structural diversification. Here we report a dual transacylation mechanism for chain release from the enacyloxin polyketide synthase, which assembles an antibiotic with promising activity against Acinetobacter baumannii. A non-elongating ketosynthase domain transfers the polyketide chain from the final acyl carrier protein domain of the synthase to a separate carrier protein and a nonribosomal peptide synthetase condensation domain condenses it with (1S, 3R, 4S)-3, 4-dihydroxycyclohexane carboxylic acid. Molecular dissection of this process reveals that non-elongating ketosynthase domain-mediated transacylation circumvents the inability of the condensation domain to recognize the acyl carrier protein domain. Several 3, 4-dihydroxycyclohexane carboxylic acid analogues can be employed for chain release, suggesting a promising strategy for producing enacyloxin analogues. 2019-10-01 2019-09-23 /pmc/articles/PMC6774797/ /pubmed/31548673 http://dx.doi.org/10.1038/s41557-019-0309-7 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Masschelein, Joleen Sydor, Paulina K. Hobson, Christian Howe, Rhiannon Jones, Cerith Roberts, Douglas M. Ling Yap, Zhong Parkhill, Julian Mahenthiralingam, Eshwar Challis, Gregory L. A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
title | A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
title_full | A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
title_fullStr | A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
title_full_unstemmed | A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
title_short | A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
title_sort | dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774797/ https://www.ncbi.nlm.nih.gov/pubmed/31548673 http://dx.doi.org/10.1038/s41557-019-0309-7 |
work_keys_str_mv | AT masscheleinjoleen adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT sydorpaulinak adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT hobsonchristian adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT howerhiannon adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT jonescerith adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT robertsdouglasm adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT lingyapzhong adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT parkhilljulian adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT mahenthiralingameshwar adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT challisgregoryl adualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT masscheleinjoleen dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT sydorpaulinak dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT hobsonchristian dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT howerhiannon dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT jonescerith dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT robertsdouglasm dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT lingyapzhong dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT parkhilljulian dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT mahenthiralingameshwar dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis AT challisgregoryl dualtransacylationmechanismforpolyketidesynthasechainreleaseinenacyloxinantibioticbiosynthesis |