Cargando…
Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study
Further theoretical investigation on the reaction behaviour of triallyl isocyanurate (TAIC) in the UV radiation cross-linking process of polyethylene (PE) is accomplished by density functional theory for high voltage cable insulation materials. The reaction potential energy information of the 13 rea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774971/ https://www.ncbi.nlm.nih.gov/pubmed/31598274 http://dx.doi.org/10.1098/rsos.182196 |
_version_ | 1783456133731581952 |
---|---|
author | Zhang, Hui Shang, Yan Zhao, Hong Wang, Xuan Han, Baozhong Li, Zesheng |
author_facet | Zhang, Hui Shang, Yan Zhao, Hong Wang, Xuan Han, Baozhong Li, Zesheng |
author_sort | Zhang, Hui |
collection | PubMed |
description | Further theoretical investigation on the reaction behaviour of triallyl isocyanurate (TAIC) in the UV radiation cross-linking process of polyethylene (PE) is accomplished by density functional theory for high voltage cable insulation materials. The reaction potential energy information of the 13 reaction channels at B3LYP/6–311 + G(d,p) level are identified. These have been explored that the TAIC take part in the reaction behaviour on ground state during UV radiation cross-linking process and TAIC intra-molecular isomerization reaction itself. In addition, the results show that the effect of multiplication and acceleration for the cross-linking reaction of trimethylopropane trimethacrylate (TMPTMA) would be better than that of TAIC. It has further clarified the reasons why UV radiation cross-linking reaction of PE had been initiated by benzophenone (Bp), and the TAIC or TMPTMA needed to take part. The results obtained in the present study could directly guide both the optimization of UV radiation cross-linking PE process and the development of the insulation material of high-voltage cable in real application. |
format | Online Article Text |
id | pubmed-6774971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67749712019-10-09 Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study Zhang, Hui Shang, Yan Zhao, Hong Wang, Xuan Han, Baozhong Li, Zesheng R Soc Open Sci Chemistry Further theoretical investigation on the reaction behaviour of triallyl isocyanurate (TAIC) in the UV radiation cross-linking process of polyethylene (PE) is accomplished by density functional theory for high voltage cable insulation materials. The reaction potential energy information of the 13 reaction channels at B3LYP/6–311 + G(d,p) level are identified. These have been explored that the TAIC take part in the reaction behaviour on ground state during UV radiation cross-linking process and TAIC intra-molecular isomerization reaction itself. In addition, the results show that the effect of multiplication and acceleration for the cross-linking reaction of trimethylopropane trimethacrylate (TMPTMA) would be better than that of TAIC. It has further clarified the reasons why UV radiation cross-linking reaction of PE had been initiated by benzophenone (Bp), and the TAIC or TMPTMA needed to take part. The results obtained in the present study could directly guide both the optimization of UV radiation cross-linking PE process and the development of the insulation material of high-voltage cable in real application. The Royal Society 2019-09-25 /pmc/articles/PMC6774971/ /pubmed/31598274 http://dx.doi.org/10.1098/rsos.182196 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Chemistry Zhang, Hui Shang, Yan Zhao, Hong Wang, Xuan Han, Baozhong Li, Zesheng Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study |
title | Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study |
title_full | Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study |
title_fullStr | Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study |
title_full_unstemmed | Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study |
title_short | Further discussion on the reaction behaviour of triallyl isocyanurate in the UV radiation cross-linking process of polyethylene: a theoretical study |
title_sort | further discussion on the reaction behaviour of triallyl isocyanurate in the uv radiation cross-linking process of polyethylene: a theoretical study |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774971/ https://www.ncbi.nlm.nih.gov/pubmed/31598274 http://dx.doi.org/10.1098/rsos.182196 |
work_keys_str_mv | AT zhanghui furtherdiscussiononthereactionbehaviouroftriallylisocyanurateintheuvradiationcrosslinkingprocessofpolyethyleneatheoreticalstudy AT shangyan furtherdiscussiononthereactionbehaviouroftriallylisocyanurateintheuvradiationcrosslinkingprocessofpolyethyleneatheoreticalstudy AT zhaohong furtherdiscussiononthereactionbehaviouroftriallylisocyanurateintheuvradiationcrosslinkingprocessofpolyethyleneatheoreticalstudy AT wangxuan furtherdiscussiononthereactionbehaviouroftriallylisocyanurateintheuvradiationcrosslinkingprocessofpolyethyleneatheoreticalstudy AT hanbaozhong furtherdiscussiononthereactionbehaviouroftriallylisocyanurateintheuvradiationcrosslinkingprocessofpolyethyleneatheoreticalstudy AT lizesheng furtherdiscussiononthereactionbehaviouroftriallylisocyanurateintheuvradiationcrosslinkingprocessofpolyethyleneatheoreticalstudy |