Cargando…
Convolution kernel and iterative reconstruction affect the diagnostic performance of radiomics and deep learning in lung adenocarcinoma pathological subtypes
BACKGROUND: The aim of this study was to investigate the influence of convolution kernel and iterative reconstruction on the diagnostic performance of radiomics and deep learning (DL) in lung adenocarcinomas. METHODS: A total of 183 patients with 215 lung adenocarcinomas were included in this study....
Autores principales: | Zhao, Wei, Zhang, Wei, Sun, Yingli, Ye, Yuxiang, Yang, Jiancheng, Chen, Wufei, Gao, Pan, Li, Jianying, Li, Cheng, Jin, Liang, Wang, Peijun, Hua, Yanqing, Li, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775016/ https://www.ncbi.nlm.nih.gov/pubmed/31426132 http://dx.doi.org/10.1111/1759-7714.13161 |
Ejemplares similares
-
Convolutional Neural Network Addresses the Confounding Impact of CT Reconstruction Kernels on Radiomics Studies
por: Yoon, Jin H., et al.
Publicado: (2021) -
Prediction of the Growth Rate of Early-Stage Lung Adenocarcinoma by Radiomics
por: Tan, Mingyu, et al.
Publicado: (2021) -
The Potential of Radiomics Nomogram in Non-invasively Prediction of Epidermal Growth Factor Receptor Mutation Status and Subtypes in Lung Adenocarcinoma
por: Zhao, Wei, et al.
Publicado: (2020) -
A delta-radiomics model for preoperative prediction of invasive lung adenocarcinomas manifesting as radiological part-solid nodules
por: Chen, Wufei, et al.
Publicado: (2022) -
Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule
por: He, Lan, et al.
Publicado: (2016)