Cargando…
Decoding tumor mutation burden and driver mutations in early stage lung adenocarcinoma using CT‐based radiomics signature
BACKGROUND: Tumor mutation burden (TMB) is an important determinant and biomarker for response of targeted therapy and prognosis in patients with lung cancer. The present study aimed to determine whether radiomics signature could non‐invasively predict the TMB status and driver mutations in patients...
Autores principales: | Wang, Xiaoxiao, Kong, Cheng, Xu, Weizhang, Yang, Sheng, Shi, Dan, Zhang, Jingyuan, Du, Mulong, Wang, Siwei, Bai, Yongkang, Zhang, Te, Chen, Zeng, Ma, Zhifei, Wang, Jie, Dong, Gaochao, Sun, Mengting, Yin, Rong, Chen, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775017/ https://www.ncbi.nlm.nih.gov/pubmed/31414580 http://dx.doi.org/10.1111/1759-7714.13163 |
Ejemplares similares
-
Predicting Tumor Mutation Burden and EGFR Mutation Using Clinical and Radiomic Features in Patients with Malignant Pulmonary Nodules
por: Yin, Wenda, et al.
Publicado: (2022) -
IDH mutation-specific radiomic signature in lower-grade gliomas
por: Liu, Xing, et al.
Publicado: (2019) -
Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
por: Wang, Hongmei, et al.
Publicado: (2020) -
Correction to: Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
por: Wang, Hongmei, et al.
Publicado: (2021) -
Comprehensive analysis of genomic mutation signature and tumor mutation burden for prognosis of intrahepatic cholangiocarcinoma
por: Zhang, Rui, et al.
Publicado: (2021)