Cargando…
Deciphering Dynamical Nonlinearities in Short Time Series Using Recurrent Neural Networks
Surrogate testing techniques have been used widely to investigate the presence of dynamical nonlinearities, an essential ingredient of deterministic chaotic processes. Traditional surrogate testing subscribes to statistical hypothesis testing and investigates potential differences in discriminant st...
Autor principal: | Nagarajan, Radhakrishnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775059/ https://www.ncbi.nlm.nih.gov/pubmed/31578387 http://dx.doi.org/10.1038/s41598-019-50625-y |
Ejemplares similares
-
Interpretable Recurrent Neural Networks for reconstructing nonlinear dynamical systems from time series observations
por: Durstewitz, Daniel
Publicado: (2021) -
Nonlinear transient amplification in recurrent neural networks with short-term plasticity
por: Wu, Yue Kris, et al.
Publicado: (2021) -
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
por: Ma, Huanfei, et al.
Publicado: (2014) -
Nonlinear Dynamics Analysis of a Self-Organizing Recurrent Neural Network: Chaos Waning
por: Eser, Jürgen, et al.
Publicado: (2014) -
Recurrent Neural Networks for Multivariate Time Series with Missing Values
por: Che, Zhengping, et al.
Publicado: (2018)