Cargando…
Reconstructing neuronal circuitry from parallel spike trains
State-of-the-art techniques allow researchers to record large numbers of spike trains in parallel for many hours. With enough such data, we should be able to infer the connectivity among neurons. Here we develop a method for reconstructing neuronal circuitry by applying a generalized linear model (G...
Autores principales: | Kobayashi, Ryota, Kurita, Shuhei, Kurth, Anno, Kitano, Katsunori, Mizuseki, Kenji, Diesmann, Markus, Richmond, Barry J., Shinomoto, Shigeru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775109/ https://www.ncbi.nlm.nih.gov/pubmed/31578320 http://dx.doi.org/10.1038/s41467-019-12225-2 |
Ejemplares similares
-
Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold
por: Kobayashi, Ryota, et al.
Publicado: (2009) -
A convolutional neural network for estimating synaptic connectivity from spike trains
por: Endo, Daisuke, et al.
Publicado: (2021) -
How slow K(+ )currents impact on spike generation mechanism?
por: Kobayashi, Ryota, et al.
Publicado: (2015) -
Impact of slow K(+) currents on spike generation can be described by an adaptive threshold model
por: Kobayashi, Ryota, et al.
Publicado: (2016) -
Estimating synaptic connections from multiple spike trains based on a coupled escape rate model
por: Kobayashi, Ryota, et al.
Publicado: (2013)