Cargando…
A Fast Parameter Identification Framework for Personalized Pharmacokinetics
This paper introduces a novel framework for fast parameter identification of personalized pharmacokinetic problems. Given one sample observation of a new subject, the framework predicts the parameters of the subject based on prior knowledge from a pharmacokinetic database. The feasibility of this fr...
Autores principales: | Yang, Chenxi, Tavassolian, Negar, Haddad, Wassim M., Bailey, James M., Gholami, Behnood |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775128/ https://www.ncbi.nlm.nih.gov/pubmed/31578414 http://dx.doi.org/10.1038/s41598-019-50810-z |
Ejemplares similares
-
Closed-Loop Control for Fluid Resuscitation: Recent Advances and Future Challenges
por: Gholami, Behnood, et al.
Publicado: (2021) -
Using sensor-fusion and machine-learning algorithms to assess acute pain in non-verbal infants: a study protocol
por: Roué, Jean-Michel, et al.
Publicado: (2021) -
Classification of aortic stenosis using conventional machine learning and deep learning methods based on multi-dimensional cardio-mechanical signals
por: Yang, Chenxi, et al.
Publicado: (2020) -
Efficient detection of aortic stenosis using morphological characteristics of cardiomechanical signals and heart rate variability parameters
por: Shokouhmand, Arash, et al.
Publicado: (2021) -
An Open-Access Database for the Evaluation of Cardio-Mechanical Signals From Patients With Valvular Heart Diseases
por: Yang, Chenxi, et al.
Publicado: (2021)