Cargando…
Sleep stage classification from heart-rate variability using long short-term memory neural networks
Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account lo...
Autores principales: | Radha, Mustafa, Fonseca, Pedro, Moreau, Arnaud, Ross, Marco, Cerny, Andreas, Anderer, Peter, Long, Xi, Aarts, Ronald M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775145/ https://www.ncbi.nlm.nih.gov/pubmed/31578345 http://dx.doi.org/10.1038/s41598-019-49703-y |
Ejemplares similares
-
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Radha, Mustafa, et al.
Publicado: (2021) -
Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests
por: Ross, Marco, et al.
Publicado: (2023) -
Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance
por: van Gilst, M. M., et al.
Publicado: (2020) -
Effects of Between- and Within-Subject Variability on Autonomic Cardiorespiratory Activity during Sleep and Their Limitations on Sleep Staging: A Multilevel Analysis
por: Long, Xi, et al.
Publicado: (2015) -
A computationally efficient algorithm for wearable sleep staging in clinical populations
por: Fonseca, Pedro, et al.
Publicado: (2023)