Cargando…

Hydrogen-bonded frameworks for molecular structure determination

Single crystal X-ray diffraction is arguably the most definitive method for molecular structure determination, but the inability to grow suitable single crystals can frustrate conventional X-ray diffraction analysis. We report herein an approach to molecular structure determination that relies on a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuantao, Tang, Sishuang, Yusov, Anna, Rose, James, Borrfors, André Nyberg, Hu, Chunhua T., Ward, Michael D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775153/
https://www.ncbi.nlm.nih.gov/pubmed/31578331
http://dx.doi.org/10.1038/s41467-019-12453-6
Descripción
Sumario:Single crystal X-ray diffraction is arguably the most definitive method for molecular structure determination, but the inability to grow suitable single crystals can frustrate conventional X-ray diffraction analysis. We report herein an approach to molecular structure determination that relies on a versatile toolkit of guanidinium organosulfonate hydrogen-bonded host frameworks that form crystalline inclusion compounds with target molecules in a single-step crystallization, complementing the crystalline sponge method that relies on diffusion of the target into the cages of a metal-organic framework. The peculiar properties of the host frameworks enable rapid stoichiometric inclusion of a wide range of target molecules with full occupancy, typically without disorder and accompanying solvent, affording well-refined structures. Moreover, anomalous scattering by the framework sulfur atoms enables reliable assignment of absolute configuration of stereogenic centers. An ever-expanding library of organosulfonates provides a toolkit of frameworks for capturing specific target molecules for their structure determination.