Cargando…
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
Background: Tuberculosis disease, caused by Mycobacterium tuberculosis, is a major public health problem. The emergence of M. tuberculosis strains resistant to existing treatments threatens to derail control efforts. Resistance is mainly conferred by mutations in genes coding for drug targets or con...
Autores principales: | Deelder, Wouter, Christakoudi, Sofia, Phelan, Jody, Benavente, Ernest Diez, Campino, Susana, McNerney, Ruth, Palla, Luigi, Clark, Taane G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775242/ https://www.ncbi.nlm.nih.gov/pubmed/31616478 http://dx.doi.org/10.3389/fgene.2019.00922 |
Ejemplares similares
-
Using deep learning to identify recent positive selection in malaria parasite sequence data
por: Deelder, Wouter, et al.
Publicado: (2021) -
A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis
por: Deelder, Wouter, et al.
Publicado: (2022) -
Geographical classification of malaria parasites through applying machine learning to whole genome sequence data
por: Deelder, Wouter, et al.
Publicado: (2022) -
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
por: Libiseller-Egger, Julian, et al.
Publicado: (2023) -
COVID-profiler: a webserver for the analysis of SARS-CoV-2 sequencing data
por: Phelan, Jody, et al.
Publicado: (2022)