Cargando…

8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors

We have previously reported that 8-bromo-7-methoxychrysin (BrMC), a novel synthetic derivative of chrysin, was demonstrated anti-tumor activities against several human cancers, including lung cancer. Interaction between inflammation and cancer stem cell are recently increasingly recognized in tumori...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Qing, Wen, Min, Xu, Chang, Chen, A, Qiu, Ye-Bei, Cao, Jian-Guo, Zhang, Jian-Song, Song, Zhen-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775618/
https://www.ncbi.nlm.nih.gov/pubmed/31602275
http://dx.doi.org/10.7150/jca.30143
_version_ 1783456288325238784
author Yuan, Qing
Wen, Min
Xu, Chang
Chen, A
Qiu, Ye-Bei
Cao, Jian-Guo
Zhang, Jian-Song
Song, Zhen-Wei
author_facet Yuan, Qing
Wen, Min
Xu, Chang
Chen, A
Qiu, Ye-Bei
Cao, Jian-Guo
Zhang, Jian-Song
Song, Zhen-Wei
author_sort Yuan, Qing
collection PubMed
description We have previously reported that 8-bromo-7-methoxychrysin (BrMC), a novel synthetic derivative of chrysin, was demonstrated anti-tumor activities against several human cancers, including lung cancer. Interaction between inflammation and cancer stem cell are recently increasingly recognized in tumorigenesis and progression. The purpose of this study was to investigate whether BrMC inhibits lung cancer stemness of H460 cells induced by inflammatory factors (TGF-β combined with TNF-α) and its potential mechanism. Our results showed that BrMC inhibited lung cancer stemness, as validated by enhanced self-renewal ability, higher in vitro tumorigenicity, and increased expression of CD133, CD44, Bmi1 and Oct4 in H460 cells administered TNF-α after prolonged induction by TGF-β, in a concentration-dependent manner. Both NF-κB inhibition by SN50 and FoxM1 suppression by thiostrepton (THI) prompted the inhibition of BrMC on lung CSCs. Conversely, overexpression of NF-κBp65 significantly antagonized the above effects of BrMC. Meanwhile, overexpression of FoxM1 also significantly compromised BrMC function on suppression of FoxM1 and NF-κBp65 as well as stemness of lung CSCs. Our results suggest that activation of NF-κB and FoxM1 by cytokines facilitate the acquisition CSCs phenotype, and compromise the chemical inhibition, which may represent an effective therapeutic target for treatment of human lung cancer. Moreover, BrMC may be a potential promising candidate for targeting NF-κB/ FoxM1 to prevent the tumorigenesis under inflammatory microenvironment.
format Online
Article
Text
id pubmed-6775618
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-67756182019-10-10 8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors Yuan, Qing Wen, Min Xu, Chang Chen, A Qiu, Ye-Bei Cao, Jian-Guo Zhang, Jian-Song Song, Zhen-Wei J Cancer Research Paper We have previously reported that 8-bromo-7-methoxychrysin (BrMC), a novel synthetic derivative of chrysin, was demonstrated anti-tumor activities against several human cancers, including lung cancer. Interaction between inflammation and cancer stem cell are recently increasingly recognized in tumorigenesis and progression. The purpose of this study was to investigate whether BrMC inhibits lung cancer stemness of H460 cells induced by inflammatory factors (TGF-β combined with TNF-α) and its potential mechanism. Our results showed that BrMC inhibited lung cancer stemness, as validated by enhanced self-renewal ability, higher in vitro tumorigenicity, and increased expression of CD133, CD44, Bmi1 and Oct4 in H460 cells administered TNF-α after prolonged induction by TGF-β, in a concentration-dependent manner. Both NF-κB inhibition by SN50 and FoxM1 suppression by thiostrepton (THI) prompted the inhibition of BrMC on lung CSCs. Conversely, overexpression of NF-κBp65 significantly antagonized the above effects of BrMC. Meanwhile, overexpression of FoxM1 also significantly compromised BrMC function on suppression of FoxM1 and NF-κBp65 as well as stemness of lung CSCs. Our results suggest that activation of NF-κB and FoxM1 by cytokines facilitate the acquisition CSCs phenotype, and compromise the chemical inhibition, which may represent an effective therapeutic target for treatment of human lung cancer. Moreover, BrMC may be a potential promising candidate for targeting NF-κB/ FoxM1 to prevent the tumorigenesis under inflammatory microenvironment. Ivyspring International Publisher 2019-08-28 /pmc/articles/PMC6775618/ /pubmed/31602275 http://dx.doi.org/10.7150/jca.30143 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Yuan, Qing
Wen, Min
Xu, Chang
Chen, A
Qiu, Ye-Bei
Cao, Jian-Guo
Zhang, Jian-Song
Song, Zhen-Wei
8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
title 8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
title_full 8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
title_fullStr 8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
title_full_unstemmed 8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
title_short 8-bromo-7-methoxychrysin targets NF-κB and FoxM1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
title_sort 8-bromo-7-methoxychrysin targets nf-κb and foxm1 to inhibit lung cancer stem cells induced by pro-inflammatory factors
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775618/
https://www.ncbi.nlm.nih.gov/pubmed/31602275
http://dx.doi.org/10.7150/jca.30143
work_keys_str_mv AT yuanqing 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT wenmin 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT xuchang 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT chena 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT qiuyebei 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT caojianguo 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT zhangjiansong 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors
AT songzhenwei 8bromo7methoxychrysintargetsnfkbandfoxm1toinhibitlungcancerstemcellsinducedbyproinflammatoryfactors