Cargando…
Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects
In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. Studying variation in parental care quality within a species and which factors may affect it can, therefore, shed important light on patterns of mate choice and other r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776002/ https://www.ncbi.nlm.nih.gov/pubmed/31592213 http://dx.doi.org/10.1093/beheco/arz101 |
_version_ | 1783456348599484416 |
---|---|
author | Nygård, Malin Kvarnemo, Charlotta Ahnesjö, Ingrid Braga Goncalves, Ines |
author_facet | Nygård, Malin Kvarnemo, Charlotta Ahnesjö, Ingrid Braga Goncalves, Ines |
author_sort | Nygård, Malin |
collection | PubMed |
description | In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. Studying variation in parental care quality within a species and which factors may affect it can, therefore, shed important light on patterns of mate choice and other reproductive decisions observed in nature. Using Syngnathus typhle, a pipefish species with extensive uniparental male care, with embryos developing inside a brood pouch during a lengthy pregnancy, we assessed how egg size (which correlates positively with female size), male size, and water temperature affect brooding traits that relate to male care quality, all measured on day 18, approximately 1/3, of the brooding period. We found that larger males brooded eggs at lower densities, and their embryos were heavier than those of small males independent of initial egg size. However, large males had lower embryo survival relative to small males. We found no effect of egg size or of paternal size on within-pouch oxygen levels, but oxygen levels were significantly higher in the bottom than the middle section of the pouch. Males that brooded at higher temperatures had lower pouch oxygen levels presumably because of higher embryo developmental rates, as more developed embryos consume more oxygen. Together, our results suggest that small and large males follow distinct paternal strategies: large males positively affect embryo size whereas small males favor embryo survival. As females prefer large mates, offspring size at independence may be more important to female fitness than offspring survival during development. |
format | Online Article Text |
id | pubmed-6776002 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-67760022019-10-07 Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects Nygård, Malin Kvarnemo, Charlotta Ahnesjö, Ingrid Braga Goncalves, Ines Behav Ecol Original Articles In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. Studying variation in parental care quality within a species and which factors may affect it can, therefore, shed important light on patterns of mate choice and other reproductive decisions observed in nature. Using Syngnathus typhle, a pipefish species with extensive uniparental male care, with embryos developing inside a brood pouch during a lengthy pregnancy, we assessed how egg size (which correlates positively with female size), male size, and water temperature affect brooding traits that relate to male care quality, all measured on day 18, approximately 1/3, of the brooding period. We found that larger males brooded eggs at lower densities, and their embryos were heavier than those of small males independent of initial egg size. However, large males had lower embryo survival relative to small males. We found no effect of egg size or of paternal size on within-pouch oxygen levels, but oxygen levels were significantly higher in the bottom than the middle section of the pouch. Males that brooded at higher temperatures had lower pouch oxygen levels presumably because of higher embryo developmental rates, as more developed embryos consume more oxygen. Together, our results suggest that small and large males follow distinct paternal strategies: large males positively affect embryo size whereas small males favor embryo survival. As females prefer large mates, offspring size at independence may be more important to female fitness than offspring survival during development. Oxford University Press 2019 2019-06-29 /pmc/articles/PMC6776002/ /pubmed/31592213 http://dx.doi.org/10.1093/beheco/arz101 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Nygård, Malin Kvarnemo, Charlotta Ahnesjö, Ingrid Braga Goncalves, Ines Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
title | Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
title_full | Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
title_fullStr | Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
title_full_unstemmed | Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
title_short | Pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
title_sort | pipefish embryo oxygenation, survival, and development: egg size, male size, and temperature effects |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776002/ https://www.ncbi.nlm.nih.gov/pubmed/31592213 http://dx.doi.org/10.1093/beheco/arz101 |
work_keys_str_mv | AT nygardmalin pipefishembryooxygenationsurvivalanddevelopmenteggsizemalesizeandtemperatureeffects AT kvarnemocharlotta pipefishembryooxygenationsurvivalanddevelopmenteggsizemalesizeandtemperatureeffects AT ahnesjoingrid pipefishembryooxygenationsurvivalanddevelopmenteggsizemalesizeandtemperatureeffects AT bragagoncalvesines pipefishembryooxygenationsurvivalanddevelopmenteggsizemalesizeandtemperatureeffects |