Cargando…

LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR-9-5p and regulating SPAG9 expression

Anaplastic thyroid carcinoma (ATC) has a poor prognosis due to its resistance to all conventional treatments. The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) serves a critical role in cancer chemoresistance; however, whether NEAT1 is associated with chemoresistance...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Pei, Su, Zijie, Zhang, Zhenhua, Gao, Teng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776185/
https://www.ncbi.nlm.nih.gov/pubmed/31485599
http://dx.doi.org/10.3892/ijo.2019.4868
Descripción
Sumario:Anaplastic thyroid carcinoma (ATC) has a poor prognosis due to its resistance to all conventional treatments. The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) serves a critical role in cancer chemoresistance; however, whether NEAT1 is associated with chemoresistance of ATC remains unclear. In the present study, reverse transcription-quantitative PCR assays were performed to detect the expression levels of NEAT1, microRNA (miR)-9-5p and sperm-associated antigen 9 (SPAG9). Western blot analysis was conducted to assess the protein expression levels of p62, microtubule-associated proteins 1A/1B light chain 3B and SPAG9. Cell proliferation was detected using the Cell Counting kit-8 assay, and cell apoptosis was determined by flow cytometry. Dual-luciferase reporter and RNA immunoprecipitation assays were performed to verify the interaction between NEAT1 and miR-9-5p, or miR-9-5p and SPAG9. Furthermore, an animal model was used to investigate the regulatory effects of NEAT1 on cisplatin (DDP)-resistance in tumors in vivo. The present results demonstrated that NEAT1 was upregulated in ATC tissues and cell lines, and NEAT1 silencing resulted in decreased DDP-resistance of ATC cells. In addition, NEAT1 suppressed miR-9-5p expression by binding to miR-9-5p and SPAG9 was a direct target of miR-9-5p. miR-9-5p overexpression sensitized ATC cells to DDP. Notably, NEAT1 silencing exerted its inhibitory effect on DDP-resistance of ATC via the miR-9-5p/SPAG9 axis in vitro and in vivo. In conclusion, the present study demonstrated that NEAT1 silencing ameliorated DDP-resistance of ATC, at least in part by reducing miR-9-5p sponging and regulating SPAG5 expression; therefore, NEAT1 may be considered a potential therapeutic target of ATC.