Cargando…
Transcriptome analysis of Xanthomonas oryzae pv. oryzicola exposed to H(2)O(2) reveals horizontal gene transfer contributes to its oxidative stress response
Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is one of the most severe seed-borne bacterial diseases of rice. However, the molecular mechanisms underlying Xoc in response to oxidative stress are still unknown. In this study, we performed a time-course RNA-seq an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776340/ https://www.ncbi.nlm.nih.gov/pubmed/31581193 http://dx.doi.org/10.1371/journal.pone.0218844 |
Sumario: | Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is one of the most severe seed-borne bacterial diseases of rice. However, the molecular mechanisms underlying Xoc in response to oxidative stress are still unknown. In this study, we performed a time-course RNA-seq analysis on the Xoc in response to H(2)O(2), aiming to reveal its oxidative response network. Overall, our RNA sequence analysis of Xoc revealed a significant global gene expression profile when it was exposed to H(2)O(2). There were 7, 177, and 246 genes that were differentially regulated at the early, middle, and late stages after exposure, respectively. Three genes (xoc_1643, xoc_1946, xoc_3249) showing significantly different expression levels had proven relationships with oxidative stress response and pathogenesis. Moreover, a hypothetical protein (XOC_2868) showed significantly differential expression, and the xoc_2868 mutants clearly displayed a greater H(2)O(2) sensitivity and decreased pathogenicity than those of the wild-type. Gene localization and phylogeny analysis strongly suggests that this gene may have been horizontally transferred from a Burkholderiaceae ancestor. Our study not only provides a first glance of Xoc’s global response against oxidative stress, but also reveals the impact of horizontal gene transfer in the evolutionary history of Xoc. |
---|