Cargando…

Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator

The ability to measure optical signals with fast dynamics is of significant interest in many application fields. Usually, single-shot measurements of non-periodic signals can be enabled by time magnification methods. Like an optical lens in the spatial domain, a time magnifier, or a time lens, stret...

Descripción completa

Detalles Bibliográficos
Autores principales: Misra, Arijit, Preußler, Stefan, Zhou, Linjie, Schneider, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776544/
https://www.ncbi.nlm.nih.gov/pubmed/31582796
http://dx.doi.org/10.1038/s41598-019-50691-2
Descripción
Sumario:The ability to measure optical signals with fast dynamics is of significant interest in many application fields. Usually, single-shot measurements of non-periodic signals can be enabled by time magnification methods. Like an optical lens in the spatial domain, a time magnifier, or a time lens, stretches a signal in the time domain. This stretched signal can then be further processed with low bandwidth photonics and electronics. For a robust and cost-effective measurement device, integrated solutions would be especially advantageous. Conventional time lenses require dispersion and nonlinear optical effects. Integration of a strong dispersion and nonlinearities is not straightforward on a silicon photonics platform and they might lead to signal distortions. Here we present a time magnifier based on an integrated silicon nitride microring resonator and frequency-time coherence optical sampling, which requires neither a dispersion, nor a nonlinearity. Sampling of signals with up to 100 GHz bandwidth with a stretching factor of more than 100 is achieved using low bandwidth measurement equipment. Nevertheless, with already demonstrated integrated 100 GHz modulators, the method enables the measurement of signals with bandwidths of up to 400 GHz. Since amplitude and phase can be sampled, a combination with the spectrum slicing method might enable integrated, cost-effective, small-footprint analog-to-digital converters, and measurement devices for the characterization of single irregular optical signals with fast dynamics and bandwidths in the THz range.