Cargando…

Polariton nanophotonics using phase-change materials

Polaritons formed by the coupling of light and material excitations enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the firs...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhary, Kundan, Tamagnone, Michele, Yin, Xinghui, Spägele, Christina M., Oscurato, Stefano L., Li, Jiahan, Persch, Christoph, Li, Ruoping, Rubin, Noah A., Jauregui, Luis A., Watanabe, Kenji, Taniguchi, Takashi, Kim, Philip, Wuttig, Matthias, Edgar, James H., Ambrosio, Antonio, Capasso, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776658/
https://www.ncbi.nlm.nih.gov/pubmed/31582738
http://dx.doi.org/10.1038/s41467-019-12439-4
_version_ 1783456490116349952
author Chaudhary, Kundan
Tamagnone, Michele
Yin, Xinghui
Spägele, Christina M.
Oscurato, Stefano L.
Li, Jiahan
Persch, Christoph
Li, Ruoping
Rubin, Noah A.
Jauregui, Luis A.
Watanabe, Kenji
Taniguchi, Takashi
Kim, Philip
Wuttig, Matthias
Edgar, James H.
Ambrosio, Antonio
Capasso, Federico
author_facet Chaudhary, Kundan
Tamagnone, Michele
Yin, Xinghui
Spägele, Christina M.
Oscurato, Stefano L.
Li, Jiahan
Persch, Christoph
Li, Ruoping
Rubin, Noah A.
Jauregui, Luis A.
Watanabe, Kenji
Taniguchi, Takashi
Kim, Philip
Wuttig, Matthias
Edgar, James H.
Ambrosio, Antonio
Capasso, Federico
author_sort Chaudhary, Kundan
collection PubMed
description Polaritons formed by the coupling of light and material excitations enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride interacting with the surrounding dielectric environment comprising the low-loss phase change material Ge(3)Sb(2)Te(6). We demonstrate rewritable waveguides, refractive optical elements such as lenses, prisms, and metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. This method will enable the realization of programmable miniaturized integrated optoelectronic devices and on-demand biosensors based on high quality phonon resonators.
format Online
Article
Text
id pubmed-6776658
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67766582019-10-07 Polariton nanophotonics using phase-change materials Chaudhary, Kundan Tamagnone, Michele Yin, Xinghui Spägele, Christina M. Oscurato, Stefano L. Li, Jiahan Persch, Christoph Li, Ruoping Rubin, Noah A. Jauregui, Luis A. Watanabe, Kenji Taniguchi, Takashi Kim, Philip Wuttig, Matthias Edgar, James H. Ambrosio, Antonio Capasso, Federico Nat Commun Article Polaritons formed by the coupling of light and material excitations enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride interacting with the surrounding dielectric environment comprising the low-loss phase change material Ge(3)Sb(2)Te(6). We demonstrate rewritable waveguides, refractive optical elements such as lenses, prisms, and metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. This method will enable the realization of programmable miniaturized integrated optoelectronic devices and on-demand biosensors based on high quality phonon resonators. Nature Publishing Group UK 2019-10-03 /pmc/articles/PMC6776658/ /pubmed/31582738 http://dx.doi.org/10.1038/s41467-019-12439-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Chaudhary, Kundan
Tamagnone, Michele
Yin, Xinghui
Spägele, Christina M.
Oscurato, Stefano L.
Li, Jiahan
Persch, Christoph
Li, Ruoping
Rubin, Noah A.
Jauregui, Luis A.
Watanabe, Kenji
Taniguchi, Takashi
Kim, Philip
Wuttig, Matthias
Edgar, James H.
Ambrosio, Antonio
Capasso, Federico
Polariton nanophotonics using phase-change materials
title Polariton nanophotonics using phase-change materials
title_full Polariton nanophotonics using phase-change materials
title_fullStr Polariton nanophotonics using phase-change materials
title_full_unstemmed Polariton nanophotonics using phase-change materials
title_short Polariton nanophotonics using phase-change materials
title_sort polariton nanophotonics using phase-change materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776658/
https://www.ncbi.nlm.nih.gov/pubmed/31582738
http://dx.doi.org/10.1038/s41467-019-12439-4
work_keys_str_mv AT chaudharykundan polaritonnanophotonicsusingphasechangematerials
AT tamagnonemichele polaritonnanophotonicsusingphasechangematerials
AT yinxinghui polaritonnanophotonicsusingphasechangematerials
AT spagelechristinam polaritonnanophotonicsusingphasechangematerials
AT oscuratostefanol polaritonnanophotonicsusingphasechangematerials
AT lijiahan polaritonnanophotonicsusingphasechangematerials
AT perschchristoph polaritonnanophotonicsusingphasechangematerials
AT liruoping polaritonnanophotonicsusingphasechangematerials
AT rubinnoaha polaritonnanophotonicsusingphasechangematerials
AT jaureguiluisa polaritonnanophotonicsusingphasechangematerials
AT watanabekenji polaritonnanophotonicsusingphasechangematerials
AT taniguchitakashi polaritonnanophotonicsusingphasechangematerials
AT kimphilip polaritonnanophotonicsusingphasechangematerials
AT wuttigmatthias polaritonnanophotonicsusingphasechangematerials
AT edgarjamesh polaritonnanophotonicsusingphasechangematerials
AT ambrosioantonio polaritonnanophotonicsusingphasechangematerials
AT capassofederico polaritonnanophotonicsusingphasechangematerials