Cargando…
OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction
[Image: see text] Computational drug discovery provides an efficient tool for helping large-scale lead molecule screening. One of the major tasks of lead discovery is identifying molecules with promising binding affinities toward a target, a protein in general. The accuracies of current scoring func...
Autores principales: | Zheng, Liangzhen, Fan, Jingrong, Mu, Yuguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776976/ https://www.ncbi.nlm.nih.gov/pubmed/31592466 http://dx.doi.org/10.1021/acsomega.9b01997 |
Ejemplares similares
-
OnionNet-2: A Convolutional Neural Network Model for Predicting Protein-Ligand Binding Affinity Based on Residue-Atom Contacting Shells
por: Wang, Zechen, et al.
Publicado: (2021) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
por: Wang, Debby D., et al.
Publicado: (2022) -
Ligand Binding Induces Agonistic-Like Conformational Adaptations in Helix 12 of Progesterone Receptor Ligand Binding Domain
por: Zheng, Liangzhen, et al.
Publicado: (2019) -
Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics
por: Zheng, Liangzhen, et al.
Publicado: (2016)