Cargando…

IcarisideII facilitates the differentiation of ADSCs to SCs via let-7i/STAT3 axis to preserve erectile function

BACKGROUND: IcarisideII (ICAII) could promote the differentiation of adipose tissue-derived stem cells (ADSCs) to Schwann cells (SCs), leading to improvement of erectile function (EF) and providing a realistic therapeutic option for the treatment of erectile dysfunction (ED). However, the underlying...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Pingyu, Guo, Yinxue, Shen, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777035/
https://www.ncbi.nlm.nih.gov/pubmed/31581950
http://dx.doi.org/10.1186/s40659-019-0262-3
Descripción
Sumario:BACKGROUND: IcarisideII (ICAII) could promote the differentiation of adipose tissue-derived stem cells (ADSCs) to Schwann cells (SCs), leading to improvement of erectile function (EF) and providing a realistic therapeutic option for the treatment of erectile dysfunction (ED). However, the underlying molecular mechanisms of ADSCs and ICAII in this process remain largely unclear. METHODS: ADSCs were treated with different concentrations of ICAII. Cell proliferation was determined by MTT assay. qRT-PCR and western blot were performed to detect expressions of SCs markers, signal transducer and activator of transcription-3 (STAT3), and microRNA-let-7i (let-7i). Luciferase reporter assay was conducted to verify the regulatory relationship between let-7i and STAT3. The detection of intracavernosal pressure (ICP) and the ratio of ICP/mean arterial pressure (MAP) were used to evaluate the EF in bilateral cavernous nerve injury (BCNI) rat models. RESULTS: ICAII promoted cell proliferation of ADSCs in a dose-dependent manner. The mRNA and protein levels of SCs markers were increased by ICAII treatment in a dose-dependent manner in ADSCs. Moreover, let-7i was significantly decreased in ICAII-treated ADSCs and upregulation of let-7i attenuated ICAII-induced promotion of SCs markers. In addition, STAT3 was a direct target of let-7i and upregulated in ICAII-treated ADSCs. Interestingly, overexpression of STAT3 abated the let-7i-mediated inhibition effect on differentiation of ADSCs to SCs and rescued the ICAII-mediated promotion effect on it. Besides, combination treatment of ADSCs and ICAII preserved the EF of BCNI rat models, which was undermined by let-7i overexpression. CONCLUSION: ICAII was effective for preserving EF by promoting the differentiation of ADSCs to SCs via modulating let-7i/STAT3 pathway.