Cargando…
Facile and Scalable Fabrication of Porous Polystyrene Fibers for Oil Removal by Centrifugal Spinning
[Image: see text] The demand for an efficient oil sorbent with high sorption capacity, low cost, scalable fabrication, and high selectivity for the cleanup of spreading oil on water is increasingly urgent due to the frequent occurrence of oil spill accidents in seawater all over the world. In this s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777073/ https://www.ncbi.nlm.nih.gov/pubmed/31592142 http://dx.doi.org/10.1021/acsomega.9b02091 |
Sumario: | [Image: see text] The demand for an efficient oil sorbent with high sorption capacity, low cost, scalable fabrication, and high selectivity for the cleanup of spreading oil on water is increasingly urgent due to the frequent occurrence of oil spill accidents in seawater all over the world. In this study, porous polystyrene (PS) fibers with high hydrophobicity and superoleophilicity were directly fabricated by a centrifugal spinning method (CS). The effect of solvents, tetrahydrofuran (THF), and dimethylformamide (DMF) on the morphology and porous structure of the polystyrene fibers was evaluated by using scanning electron microscopy and nitrogen adsorption–desorption experiments. The formation mechanism for the porous structure on the fibers was also evaluated. The oil sorption capacities of the PS fibers for silicon oil, pump oil, and vegetable oil were investigated. The highest oil sorption capacity was found in PS fibers fabricated from PS solution with a THF/DMF weight ratio of 1/3, which exhibited the highest specific surface area, pore volume, and porosity. The high productivity and highly porous structure of PS fibers indicate that CS is a promising method to fabricate porous fibers for the cleanup of oil spills. |
---|