Cargando…

Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers

2D transition metal carbides and nitrides called “MXene” are recent exciting additions to the 2D nanomaterials family. The high electrical conductivity, specific capacitance, and hydrophilic nature of MXenes rival many other 2D nanosheets and have made MXenes excellent candidates for diverse applica...

Descripción completa

Detalles Bibliográficos
Autores principales: Seyedin, Shayan, Zhang, Jizhen, Usman, Ken Aldren S., Qin, Si, Glushenkov, Alexey M., Yanza, Elliard Roswell S., Jones, Robert T., Razal, Joselito M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777206/
https://www.ncbi.nlm.nih.gov/pubmed/31592335
http://dx.doi.org/10.1002/gch2.201900037
Descripción
Sumario:2D transition metal carbides and nitrides called “MXene” are recent exciting additions to the 2D nanomaterials family. The high electrical conductivity, specific capacitance, and hydrophilic nature of MXenes rival many other 2D nanosheets and have made MXenes excellent candidates for diverse applications including energy storage, electromagnetic shielding, water purification, and photocatalysis. However, MXene nanosheets degrade relatively quickly in the presence of water and oxygen, imposing great processing challenges for various applications. Here, a facile solvent exchange (SE) processing route is introduced to produce nonoxidized and highly delaminated Ti(3)C(2)T(x) MXene dispersions. A wide range of organic solvents including methanol, ethanol, isopropanol, butanol, acetone, dimethylformamide, dimethyl sulfoxide, chloroform, dichloromethane, toluene, and n‐hexane is used. Compared to known processing approaches, the SE approach is straightforward, sonication‐free, and highly versatile as multiple solvent transfers can be carried out in sequence to yield MXene in a wide range of solvents. Conductive MXene polymer composite fibers are achieved by using MXene processed via the solvent exchange (SE) approach, while the traditional redispersion approach has proven ineffective for fiber processing. This study offers a new processing route for the development of novel MXene‐based architectures, devices, and applications.