Cargando…

RAB21 interacts with TMED10 and modulates its localization and abundance

Membrane trafficking controls vesicular transport of cargo between cellular compartments. Vesicular trafficking is essential for cellular homeostasis and dysfunctional trafficking is linked to several pathologies such as neurodegenerative diseases. Following endocytosis, early endosomes act as sorti...

Descripción completa

Detalles Bibliográficos
Autores principales: Del Olmo, Tomas, Lacarrière-Keïta, Camille, Normandin, Caroline, Jean, Dominique, Boisvert, François-Michel, Jean, Steve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777364/
https://www.ncbi.nlm.nih.gov/pubmed/31455601
http://dx.doi.org/10.1242/bio.045336
Descripción
Sumario:Membrane trafficking controls vesicular transport of cargo between cellular compartments. Vesicular trafficking is essential for cellular homeostasis and dysfunctional trafficking is linked to several pathologies such as neurodegenerative diseases. Following endocytosis, early endosomes act as sorting stations of internalized materials, routing cargo toward various fates. One important class of membrane trafficking regulators are RAB GTPases. RAB21 has been associated with multiple functions and regulates integrin internalization, endosomal sorting of specific clathrin-independent cargo and autophagy. Although RAB21 is mostly associated with early endosomes, it has been shown to mediate a specific sorting event at the Golgi. From mass spectrometry data, we identified a GTP-favored interaction between RAB21 and TMED10 and 9, essential regulators of COPI and COPII vesicles. Using RAB21 knockout cells, we describe the role of RAB21 in modulating TMED10 Golgi localization. Taken together, our study suggests a new potential function of RAB21 in modulating TMED10 trafficking, with relevance to neurodegenerative disorders.