Cargando…
Overview obstacle maps for obstacle‐aware navigation of autonomous drones
Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capabi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777497/ https://www.ncbi.nlm.nih.gov/pubmed/31656453 http://dx.doi.org/10.1002/rob.21863 |
_version_ | 1783456639477612544 |
---|---|
author | Pestana, Jesús Maurer, Michael Muschick, Daniel Hofer, Manuel Fraundorfer, Friedrich |
author_facet | Pestana, Jesús Maurer, Michael Muschick, Daniel Hofer, Manuel Fraundorfer, Friedrich |
author_sort | Pestana, Jesús |
collection | PubMed |
description | Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capability of providing an obstacle map of the area of interest in a short period of time. We focus on use cases where no obstacle maps are available beforehand, for instance, in search and rescue scenarios, and on increasing the autonomy of drones in such situations. Our vision‐based mapping approach consists of two separate steps. First, the drone performs an overview flight at a safe altitude acquiring overlapping nadir images, while creating a high‐quality sparse map of the environment by using a state‐of‐the‐art photogrammetry method. Second, this map is georeferenced, densified by fitting a mesh model and converted into an Octomap obstacle map, which can be continuously updated while performing a task of interest near the ground or in the vicinity of objects. The generation of the overview obstacle map is performed in almost real time on the onboard computer of the drone, a map of size [Formula: see text] is created in [Formula: see text] , therefore, with enough time remaining for the drone to execute other tasks inside the area of interest during the same flight. We evaluate quantitatively the accuracy of the acquired map and the characteristics of the planned trajectories. We further demonstrate experimentally the safe navigation of the drone in an area mapped with our proposed approach. |
format | Online Article Text |
id | pubmed-6777497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67774972019-10-23 Overview obstacle maps for obstacle‐aware navigation of autonomous drones Pestana, Jesús Maurer, Michael Muschick, Daniel Hofer, Manuel Fraundorfer, Friedrich J Field Robot Filed Report Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capability of providing an obstacle map of the area of interest in a short period of time. We focus on use cases where no obstacle maps are available beforehand, for instance, in search and rescue scenarios, and on increasing the autonomy of drones in such situations. Our vision‐based mapping approach consists of two separate steps. First, the drone performs an overview flight at a safe altitude acquiring overlapping nadir images, while creating a high‐quality sparse map of the environment by using a state‐of‐the‐art photogrammetry method. Second, this map is georeferenced, densified by fitting a mesh model and converted into an Octomap obstacle map, which can be continuously updated while performing a task of interest near the ground or in the vicinity of objects. The generation of the overview obstacle map is performed in almost real time on the onboard computer of the drone, a map of size [Formula: see text] is created in [Formula: see text] , therefore, with enough time remaining for the drone to execute other tasks inside the area of interest during the same flight. We evaluate quantitatively the accuracy of the acquired map and the characteristics of the planned trajectories. We further demonstrate experimentally the safe navigation of the drone in an area mapped with our proposed approach. John Wiley and Sons Inc. 2019-02-13 2019-06 /pmc/articles/PMC6777497/ /pubmed/31656453 http://dx.doi.org/10.1002/rob.21863 Text en © 2019 The Authors. Journal of Field Robotics Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Filed Report Pestana, Jesús Maurer, Michael Muschick, Daniel Hofer, Manuel Fraundorfer, Friedrich Overview obstacle maps for obstacle‐aware navigation of autonomous drones |
title | Overview obstacle maps for obstacle‐aware navigation of autonomous drones |
title_full | Overview obstacle maps for obstacle‐aware navigation of autonomous drones |
title_fullStr | Overview obstacle maps for obstacle‐aware navigation of autonomous drones |
title_full_unstemmed | Overview obstacle maps for obstacle‐aware navigation of autonomous drones |
title_short | Overview obstacle maps for obstacle‐aware navigation of autonomous drones |
title_sort | overview obstacle maps for obstacle‐aware navigation of autonomous drones |
topic | Filed Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777497/ https://www.ncbi.nlm.nih.gov/pubmed/31656453 http://dx.doi.org/10.1002/rob.21863 |
work_keys_str_mv | AT pestanajesus overviewobstaclemapsforobstacleawarenavigationofautonomousdrones AT maurermichael overviewobstaclemapsforobstacleawarenavigationofautonomousdrones AT muschickdaniel overviewobstaclemapsforobstacleawarenavigationofautonomousdrones AT hofermanuel overviewobstaclemapsforobstacleawarenavigationofautonomousdrones AT fraundorferfriedrich overviewobstaclemapsforobstacleawarenavigationofautonomousdrones |