Cargando…
The reach, metric distortion, geodesic convexity and the variation of tangent spaces
In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set....
Autores principales: | Boissonnat, Jean-Daniel, Lieutier, André, Wintraecken, Mathijs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777504/ https://www.ncbi.nlm.nih.gov/pubmed/31633006 http://dx.doi.org/10.1007/s41468-019-00029-8 |
Ejemplares similares
-
Geodesic convexity in graphs
por: Pelayo, Ignacio M
Publicado: (2013) -
Local Criteria for Triangulating General Manifolds
por: Boissonnat, Jean-Daniel, et al.
Publicado: (2022) -
Fine Properties of Geodesics and Geodesic [Formula: see text] -Convexity for the Hellinger–Kantorovich Distance
por: Liero, Matthias, et al.
Publicado: (2023) -
Complex Monge–Ampère equations and geodesics in the space of Kähler metrics
por: Guedj, Vincent
Publicado: (2012) -
Quantum integrability for the Beltrami-Laplace operator for geodesically equivalent metrics: integrability criterium for geodesic equivalence
por: Matveev, V S, et al.
Publicado: (2000)