Cargando…
Disjoint Paired-Dominating sets in Cubic Graphs
A paired-dominating set of a graph G is a dominating set D with the additional requirement that the induced subgraph G[D] contains a perfect matching. We prove that the vertex set of every claw-free cubic graph can be partitioned into two paired-dominating sets.
Autores principales: | Bacsó, Gábor, Bujtás, Csilla, Tompkins, Casey, Tuza, Zsolt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777509/ https://www.ncbi.nlm.nih.gov/pubmed/31631942 http://dx.doi.org/10.1007/s00373-019-02063-w |
Ejemplares similares
-
Edge-Disjoint Branchings in Temporal Graphs
por: Campos, Victor, et al.
Publicado: (2020) -
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
por: Altarelli, Fabrizio, et al.
Publicado: (2015) -
Inverses of disjointness preving operators
por: Abramovich, YA, et al.
Publicado: (1999) -
Genetic theory for cubic graphs
por: Baniasadi, Pouya, et al.
Publicado: (2015) -
The planar cubic Cayley graphs
por: Georgakopoulos, Agelos
Publicado: (2018)