Cargando…
Structured report data can be used to develop deep learning algorithms: a proof of concept in ankle radiographs
BACKGROUND: Data used for training of deep learning networks usually needs large amounts of accurate labels. These labels are usually extracted from reports using natural language processing or by time-consuming manual review. The aim of this study was therefore to develop and evaluate a workflow fo...
Autores principales: | Pinto dos Santos, Daniel, Brodehl, Sebastian, Baeßler, Bettina, Arnhold, Gordon, Dratsch, Thomas, Chon, Seung-Hun, Mildenberger, Peter, Jungmann, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777645/ https://www.ncbi.nlm.nih.gov/pubmed/31549305 http://dx.doi.org/10.1186/s13244-019-0777-8 |
Ejemplares similares
-
Practical applications of deep learning: classifying the most common categories of plain radiographs in a PACS using a neural network
por: Dratsch, Thomas, et al.
Publicado: (2020) -
Implementation of structured reporting in clinical routine: a review of 7 years of institutional experience
por: Jorg, Tobias, et al.
Publicado: (2023) -
Radiomics for detecting prostate cancer bone metastases invisible in CT: a proof-of-concept study
por: Hinzpeter, Ricarda, et al.
Publicado: (2021) -
Radiomics-Based Prediction of Future Portal Vein Tumor Infiltration in Patients with HCC—A Proof-of-Concept Study
por: Stoehr, Fabian, et al.
Publicado: (2022) -
Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept
por: Martini, K., et al.
Publicado: (2020)