Cargando…

An autoregulatory cell cycle timer integrates growth and specification in chick wing digit development

A fundamental question is how proliferation and growth are timed during embryogenesis. Although it has been suggested that the cell cycle could be a timer, the underlying mechanisms remain elusive. Here we describe a cell cycle timer that operates in Sonic hedgehog (Shh)-expressing polarising region...

Descripción completa

Detalles Bibliográficos
Autores principales: Pickering, Joseph, Chinnaiya, Kavitha, Towers, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777937/
https://www.ncbi.nlm.nih.gov/pubmed/31545166
http://dx.doi.org/10.7554/eLife.47625
Descripción
Sumario:A fundamental question is how proliferation and growth are timed during embryogenesis. Although it has been suggested that the cell cycle could be a timer, the underlying mechanisms remain elusive. Here we describe a cell cycle timer that operates in Sonic hedgehog (Shh)-expressing polarising region cells of the chick wing bud. Our data are consistent with Shh signalling stimulating polarising region cell proliferation via Cyclin D2, and then inhibiting proliferation via a Bmp2-p27(kip1) pathway. When Shh signalling is blocked, polarising region cells over-proliferate and form an additional digit, which can be prevented by applying Bmp2 or by inhibiting D cyclin activity. In addition, Bmp2 also restores posterior digit identity in the absence of Shh signalling, thus indicating that it specifies antero-posterior (thumb to little finger) positional values. Our results reveal how an autoregulatory cell cycle timer integrates growth and specification and are widely applicable to many tissues.