Cargando…

Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix

Electron paramagnetic resonance (EPR) spectroscopy on protein single crystals is the ultimate method for determining the electronic structure of paramagnetic intermediates at the active site of an enzyme and relating the magnetic tensor to a molecular structure. However, crystals of dimensions typic...

Descripción completa

Detalles Bibliográficos
Autores principales: Sidabras, Jason W., Duan, Jifu, Winkler, Martin, Happe, Thomas, Hussein, Rana, Zouni, Athina, Suter, Dieter, Schnegg, Alexander, Lubitz, Wolfgang, Reijerse, Edward J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777973/
https://www.ncbi.nlm.nih.gov/pubmed/31620561
http://dx.doi.org/10.1126/sciadv.aay1394
_version_ 1783456691338084352
author Sidabras, Jason W.
Duan, Jifu
Winkler, Martin
Happe, Thomas
Hussein, Rana
Zouni, Athina
Suter, Dieter
Schnegg, Alexander
Lubitz, Wolfgang
Reijerse, Edward J.
author_facet Sidabras, Jason W.
Duan, Jifu
Winkler, Martin
Happe, Thomas
Hussein, Rana
Zouni, Athina
Suter, Dieter
Schnegg, Alexander
Lubitz, Wolfgang
Reijerse, Edward J.
author_sort Sidabras, Jason W.
collection PubMed
description Electron paramagnetic resonance (EPR) spectroscopy on protein single crystals is the ultimate method for determining the electronic structure of paramagnetic intermediates at the active site of an enzyme and relating the magnetic tensor to a molecular structure. However, crystals of dimensions typical for protein crystallography (0.05 to 0.3mm) provide insufficient signal intensity. In this work, we present a microwave self-resonant microhelix for nanoliter samples that can be implemented in a commercial X-band (9.5 GHz) EPR spectrometer. The self-resonant microhelix provides a measured signal-to-noise improvement up to a factor of 28 with respect to commercial EPR resonators. This work opens up the possibility to use advanced EPR techniques for studying protein single crystals of dimensions typical for x-ray crystallography. The technique is demonstrated by EPR experiments on single crystal [FeFe]-hydrogenase (Clostridium pasteurianum; CpI) with dimensions of 0.3 mm by 0.1 mm by 0.1 mm, yielding a proposed g-tensor orientation of the H(ox) state.
format Online
Article
Text
id pubmed-6777973
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-67779732019-10-16 Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix Sidabras, Jason W. Duan, Jifu Winkler, Martin Happe, Thomas Hussein, Rana Zouni, Athina Suter, Dieter Schnegg, Alexander Lubitz, Wolfgang Reijerse, Edward J. Sci Adv Research Articles Electron paramagnetic resonance (EPR) spectroscopy on protein single crystals is the ultimate method for determining the electronic structure of paramagnetic intermediates at the active site of an enzyme and relating the magnetic tensor to a molecular structure. However, crystals of dimensions typical for protein crystallography (0.05 to 0.3mm) provide insufficient signal intensity. In this work, we present a microwave self-resonant microhelix for nanoliter samples that can be implemented in a commercial X-band (9.5 GHz) EPR spectrometer. The self-resonant microhelix provides a measured signal-to-noise improvement up to a factor of 28 with respect to commercial EPR resonators. This work opens up the possibility to use advanced EPR techniques for studying protein single crystals of dimensions typical for x-ray crystallography. The technique is demonstrated by EPR experiments on single crystal [FeFe]-hydrogenase (Clostridium pasteurianum; CpI) with dimensions of 0.3 mm by 0.1 mm by 0.1 mm, yielding a proposed g-tensor orientation of the H(ox) state. American Association for the Advancement of Science 2019-10-04 /pmc/articles/PMC6777973/ /pubmed/31620561 http://dx.doi.org/10.1126/sciadv.aay1394 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Sidabras, Jason W.
Duan, Jifu
Winkler, Martin
Happe, Thomas
Hussein, Rana
Zouni, Athina
Suter, Dieter
Schnegg, Alexander
Lubitz, Wolfgang
Reijerse, Edward J.
Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
title Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
title_full Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
title_fullStr Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
title_full_unstemmed Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
title_short Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
title_sort extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777973/
https://www.ncbi.nlm.nih.gov/pubmed/31620561
http://dx.doi.org/10.1126/sciadv.aay1394
work_keys_str_mv AT sidabrasjasonw extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT duanjifu extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT winklermartin extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT happethomas extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT husseinrana extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT zouniathina extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT suterdieter extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT schneggalexander extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT lubitzwolfgang extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix
AT reijerseedwardj extendingelectronparamagneticresonancetonanolitervolumeproteinsinglecrystalsusingaselfresonantmicrohelix