Cargando…
ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning
Machine learning algorithms hold the promise to effectively automate the analysis of histopathological images that are routinely generated in clinical practice. Any machine learning method used in the clinical diagnostic process has to be extremely accurate and, ideally, provide a measure of uncerta...
Autores principales: | Rączkowska, Alicja, Możejko, Marcin, Zambonelli, Joanna, Szczurek, Ewa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778075/ https://www.ncbi.nlm.nih.gov/pubmed/31586139 http://dx.doi.org/10.1038/s41598-019-50587-1 |
Ejemplares similares
-
Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer
por: Rączkowska, Alicja, et al.
Publicado: (2022) -
A deep learning framework for automated classification of histopathological kidney whole-slide images
por: Abdeltawab, Hisham A., et al.
Publicado: (2022) -
Development and Evaluation of a Novel Deep-Learning-Based Framework for the Classification of Renal Histopathology Images
por: Abu Haeyeh, Yasmine, et al.
Publicado: (2022) -
Discovering highly potent antimicrobial peptides with deep generative model HydrAMP
por: Szymczak, Paulina, et al.
Publicado: (2023) -
A Bayesian framework for efficient and accurate variant prediction
por: Qian, Dajun, et al.
Publicado: (2018)