Cargando…
Shape memory polymer resonators as highly sensitive uncooled infrared detectors
Uncooled infrared detectors have enabled the rapid growth of thermal imaging applications. These detectors are predominantly bolometers, reading out a pixel’s temperature change due to infrared radiation as a resistance change. Another uncooled sensing method is to transduce the infrared radiation i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778134/ https://www.ncbi.nlm.nih.gov/pubmed/31586068 http://dx.doi.org/10.1038/s41467-019-12550-6 |
Sumario: | Uncooled infrared detectors have enabled the rapid growth of thermal imaging applications. These detectors are predominantly bolometers, reading out a pixel’s temperature change due to infrared radiation as a resistance change. Another uncooled sensing method is to transduce the infrared radiation into the frequency shift of a mechanical resonator. We present here highly sensitive resonant infrared sensors, based on thermo-responsive shape memory polymers. By exploiting the phase-change polymer as transduction mechanism, our approach provides 2 orders of magnitude improvement of the temperature coefficient of frequency. Noise equivalent temperature difference of 22 mK in vacuum and 112 mK in air are obtained using f/2 optics. The noise equivalent temperature difference is further improved to 6 mK in vacuum by using high-Q silicon nitride membranes as substrates for the shape memory polymers. This high performance in air eliminates the need for vacuum packaging, paving a path towards flexible non-hermetically sealed infrared sensors. |
---|