Cargando…

Plant biotransformation of T2 and HT2 toxin in cultured organs of Triticum durum Desf

The present study aimed at elucidating the uptake and biotransformation of T2 and HT2 toxins in five cultivars of durum wheat, by means of cultured plant organs. An almost complete absorption of T2 toxin (up to 100 µg) was noticed after 7 days, along with the contemporaneous formation of HT2 in plan...

Descripción completa

Detalles Bibliográficos
Autores principales: Righetti, Laura, Körber, Tania, Rolli, Enrico, Galaverna, Gianni, Suman, Michele, Bruni, Renato, Dall’Asta, Chiara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778183/
https://www.ncbi.nlm.nih.gov/pubmed/31586121
http://dx.doi.org/10.1038/s41598-019-50786-w
Descripción
Sumario:The present study aimed at elucidating the uptake and biotransformation of T2 and HT2 toxins in five cultivars of durum wheat, by means of cultured plant organs. An almost complete absorption of T2 toxin (up to 100 µg) was noticed after 7 days, along with the contemporaneous formation of HT2 in planta, whereas HT2 showed a slower uptake by uninfected plant organs. Untargeted MS-analysis allowed to identify a large spectrum of phase I and phase II metabolites, resulting in 26 T2 and 23 HT2 metabolites plus tentative isomers. A novel masked mycotoxin, 3-acetyl-HT2-glucoside, was reported for the first time in wheat. The in vitro approach confirmed its potential to both investigate the contribution of plant metabolism in the biosynthesis of masked mycotoxins and to foresee the development of biocatalytic tools to develop nature-like mixtures to be used as reference materials.