Cargando…
Building more accurate decision trees with the additive tree
The expansion of machine learning to high-stakes application domains such as medicine, finance, and criminal justice, where making informed decisions requires clear understanding of the model, has increased the interest in interpretable machine learning. The widely used Classification and Regression...
Autores principales: | Luna, José Marcio, Gennatas, Efstathios D., Ungar, Lyle H., Eaton, Eric, Diffenderfer, Eric S., Jensen, Shane T., Simone, Charles B., Friedman, Jerome H., Solberg, Timothy D., Valdes, Gilmer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778203/ https://www.ncbi.nlm.nih.gov/pubmed/31527280 http://dx.doi.org/10.1073/pnas.1816748116 |
Ejemplares similares
-
Reply to Nock and Nielsen: On the work of Nock and Nielsen and its relationship to the additive tree
por: Valdes, Gilmer, et al.
Publicado: (2020) -
MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine
por: Valdes, Gilmer, et al.
Publicado: (2016) -
Expert-augmented machine learning
por: Gennatas, Efstathios D., et al.
Publicado: (2020) -
A novel approach to build accurate and diverse decision tree forest
por: Panhalkar, Archana R., et al.
Publicado: (2021) -
Contrast trees and distribution boosting
por: Friedman, Jerome H.
Publicado: (2020)