Cargando…
High-resolution limited-angle phase tomography of dense layered objects using deep neural networks
We present a machine learning-based method for tomographic reconstruction of dense layered objects, with range of projection angles limited to [Formula: see text]. Whereas previous approaches to phase tomography generally require 2 steps, first to retrieve phase projections from intensity projection...
Autores principales: | Goy, Alexandre, Rughoobur, Girish, Li, Shuai, Arthur, Kwabena, Akinwande, Akintunde I., Barbastathis, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778227/ https://www.ncbi.nlm.nih.gov/pubmed/31527279 http://dx.doi.org/10.1073/pnas.1821378116 |
Ejemplares similares
-
Dynamic cluster formation determines viscosity and diffusion in dense protein solutions
por: von Bülow, Sören, et al.
Publicado: (2019) -
Analysis of high-resolution 3D intrachromosomal interactions aided by Bayesian network modeling
por: Zhang, Xizhe, et al.
Publicado: (2017) -
Multiplicative mixing of object identity and image attributes in single inferior temporal neurons
por: Ratan Murty, N. Apurva, et al.
Publicado: (2018) -
Agent-based representations of objects and actions in the monkey pre-supplementary motor area
por: Livi, Alessandro, et al.
Publicado: (2019) -
Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors
por: Zhang, Ke, et al.
Publicado: (2019)