Cargando…

Drug Delivery System Based On Minoxidil Nanoparticles Promotes Hair Growth In C57BL/6 Mice

PURPOSE: We designed formulations based on minoxidil (MXD) nanoparticles (N-MXD) and examined whether N-MXD can increase drug delivery into the follicles. In addition, we investigated the effect of N-MXD on hair growth in C57BL/6 mice. METHODS: N-MXD (1%) was prepared as follows: methylcellulose, p-...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagai, Noriaki, Iwai, Yoshie, Sakamoto, Akane, Otake, Hiroko, Oaku, Yoshihiro, Abe, Akinari, Nagahama, Tohru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778480/
https://www.ncbi.nlm.nih.gov/pubmed/31632009
http://dx.doi.org/10.2147/IJN.S225496
Descripción
Sumario:PURPOSE: We designed formulations based on minoxidil (MXD) nanoparticles (N-MXD) and examined whether N-MXD can increase drug delivery into the follicles. In addition, we investigated the effect of N-MXD on hair growth in C57BL/6 mice. METHODS: N-MXD (1%) was prepared as follows: methylcellulose, p-hydroxyalkylbenzoates, mannitol, and MXD were dispersed in purified water and milled using zirconia beads under refrigeration (5500 rpm, 30 s×15 times, intermittent milling). C57BL/6 mice were used to evaluate hair-growth effects. The expression levels of mRNA and protein for vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) were determined by real-time PCR and ELISA methods, respectively. RESULTS: The ratio of solid-MXD was approximately 60% in N-MXD, and the MXD nanoparticles (90–300 nm) were oblong in shape. For the design of nanomedicines, usability is important. Therefore, we measured the stability and toxicity after N-MXD treatment. No agglutination of MXD nanoparticles was detected for 2 weeks, and no redness or MXD powder residue was observed in the skin after repetitive applications of N-MXD. Next, we evaluated hair-growth effects by N-MXD treatment. MXD contents in the skin tissue from N-MXD were lower than for commercially available MXD formulations (CA-MXD). Conversely, MXD contents in the hair bulbs were higher for N-MXD than for CA-MXD, and the drug efficacy of N-MXD was also higher than that of CA-MXD. In addition, the mRNA and protein levels of IGF-1 and VEGF were enhanced by the repetitive application of N-MXD and CA-MXD, and the enhanced IGF-1 and VEGF levels were significantly higher for N-MXD than for CA-MXD. CONCLUSION: We designed a novel nanomedicine based on MXD nanoparticles and showed that N-MXD can deliver MXD into hair bulbs via hair follicles and that the therapeutic efficiency for hair growth is higher than for CA-MXD (solution type).