Cargando…
Multi-trait Improvement by Predicting Genetic Correlations in Breeding Crosses
The many quantitative traits of interest to plant breeders are often genetically correlated, which can complicate progress from selection. Improving multiple traits may be enhanced by identifying parent combinations – an important breeding step – that will deliver more favorable genetic correlations...
Autores principales: | Neyhart, Jeffrey L., Lorenz, Aaron J., Smith, Kevin P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778794/ https://www.ncbi.nlm.nih.gov/pubmed/31358561 http://dx.doi.org/10.1534/g3.119.400406 |
Ejemplares similares
-
A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data
por: Montesinos-López, Osval A., et al.
Publicado: (2019) -
Dissecting the Genetic Architecture of Biofuel-Related Traits in a Sorghum Breeding Population
por: Ishimori, Motoyuki, et al.
Publicado: (2020) -
Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods
por: Runcie, Daniel, et al.
Publicado: (2019) -
Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2018) -
Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials
por: Cuevas, Jaime, et al.
Publicado: (2019)