Cargando…
Predicting Longitudinal Traits Derived from High-Throughput Phenomics in Contrasting Environments Using Genomic Legendre Polynomials and B-Splines
Recent advancements in phenomics coupled with increased output from sequencing technologies can create the platform needed to rapidly increase abiotic stress tolerance of crops, which increasingly face productivity challenges due to climate change. In particular, high-throughput phenotyping (HTP) en...
Autores principales: | Momen, Mehdi, Campbell, Malachy T., Walia, Harkamal, Morota, Gota |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778811/ https://www.ncbi.nlm.nih.gov/pubmed/31427454 http://dx.doi.org/10.1534/g3.119.400346 |
Ejemplares similares
-
Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping
por: Baba, Toshimi, et al.
Publicado: (2020) -
Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies
por: Momen, Mehdi, et al.
Publicado: (2019) -
Utilizing random regression models for genomic prediction of a longitudinal trait derived from high‐throughput phenotyping
por: Campbell, Malachy, et al.
Publicado: (2018) -
A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies
por: Wang, Zigui, et al.
Publicado: (2020) -
Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar
por: Rincent, Renaud, et al.
Publicado: (2018)