Cargando…
A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data
In this paper we propose a Bayesian multi-output regressor stacking (BMORS) model that is a generalization of the multi-trait regressor stacking method. The proposed BMORS model consists of two stages: in the first stage, a univariate genomic best linear unbiased prediction (GBLUP including genotype...
Autores principales: | Montesinos-López, Osval A., Montesinos-López, Abelardo, Crossa, José, Cuevas, Jaime, Montesinos-López, José C., Gutiérrez, Zitlalli Salas, Lillemo, Morten, Philomin, Juliana, Singh, Ravi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778812/ https://www.ncbi.nlm.nih.gov/pubmed/31427455 http://dx.doi.org/10.1534/g3.119.400336 |
Ejemplares similares
-
Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials
por: Cuevas, Jaime, et al.
Publicado: (2019) -
Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2018) -
A Benchmarking Between Deep Learning, Support Vector Machine and Bayesian Threshold Best Linear Unbiased Prediction for Predicting Ordinal Traits in Plant Breeding
por: Montesinos-López, Osval A., et al.
Publicado: (2019) -
Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture
por: Montesinos-López, Abelardo, et al.
Publicado: (2018) -
An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction
por: Montesinos-López, Osval A., et al.
Publicado: (2019)