Cargando…
A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology
Stain normalization is an important processing task for computer-aided diagnosis (CAD) systems in modern digital pathology. This task reduces the color and intensity variations present in stained images from different laboratories. Consequently, stain normalization typically increases the prediction...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778842/ https://www.ncbi.nlm.nih.gov/pubmed/31632974 http://dx.doi.org/10.3389/fmed.2019.00193 |
_version_ | 1783456832830832640 |
---|---|
author | Anghel, Andreea Stanisavljevic, Milos Andani, Sonali Papandreou, Nikolaos Rüschoff, Jan Hendrick Wild, Peter Gabrani, Maria Pozidis, Haralampos |
author_facet | Anghel, Andreea Stanisavljevic, Milos Andani, Sonali Papandreou, Nikolaos Rüschoff, Jan Hendrick Wild, Peter Gabrani, Maria Pozidis, Haralampos |
author_sort | Anghel, Andreea |
collection | PubMed |
description | Stain normalization is an important processing task for computer-aided diagnosis (CAD) systems in modern digital pathology. This task reduces the color and intensity variations present in stained images from different laboratories. Consequently, stain normalization typically increases the prediction accuracy of CAD systems. However, there are computational challenges that this normalization step must overcome, especially for real-time applications: the memory and run-time bottlenecks associated with the processing of images in high resolution, e.g., 40X. Moreover, stain normalization can be sensitive to the quality of the input images, e.g., when they contain stain spots or dirt. In this case, the algorithm may fail to accurately estimate the stain vectors. We present a high-performance system for stain normalization using a state-of-the-art unsupervised method based on stain-vector estimation. Using a highly-optimized normalization engine, our architecture enables high-speed and large-scale processing of high-resolution whole-slide images. This optimized engine integrates an automated thresholding technique to determine the useful pixels and uses a novel pixel-sampling method that significantly reduces the processing time of the normalization algorithm. We demonstrate the performance of our architecture using measurements from images of different sizes and scanner formats that belong to four different datasets. The results show that our optimizations achieve up to 58x speedup compared to a baseline implementation. We also prove the scalability of our system by showing that the processing time scales almost linearly with the amount of tissue pixels present in the image. Furthermore, we show that the output of the normalization algorithm can be adversely affected when the input images include artifacts. To address this issue, we enhance the stain normalization pipeline by introducing a parameter cross-checking technique that automatically detects the distortion of the algorithm's critical parameters. To assess the robustness of the proposed method we employ a machine learning (ML) pipeline that classifies images for detection of prostate cancer. The results show that the enhanced normalization algorithm increases the classification accuracy of the ML pipeline in the presence of poor-quality input images. For an exemplary ML pipeline, our new method increases the accuracy on an unseen dataset from 0.79 to 0.87. |
format | Online Article Text |
id | pubmed-6778842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67788422019-10-18 A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology Anghel, Andreea Stanisavljevic, Milos Andani, Sonali Papandreou, Nikolaos Rüschoff, Jan Hendrick Wild, Peter Gabrani, Maria Pozidis, Haralampos Front Med (Lausanne) Medicine Stain normalization is an important processing task for computer-aided diagnosis (CAD) systems in modern digital pathology. This task reduces the color and intensity variations present in stained images from different laboratories. Consequently, stain normalization typically increases the prediction accuracy of CAD systems. However, there are computational challenges that this normalization step must overcome, especially for real-time applications: the memory and run-time bottlenecks associated with the processing of images in high resolution, e.g., 40X. Moreover, stain normalization can be sensitive to the quality of the input images, e.g., when they contain stain spots or dirt. In this case, the algorithm may fail to accurately estimate the stain vectors. We present a high-performance system for stain normalization using a state-of-the-art unsupervised method based on stain-vector estimation. Using a highly-optimized normalization engine, our architecture enables high-speed and large-scale processing of high-resolution whole-slide images. This optimized engine integrates an automated thresholding technique to determine the useful pixels and uses a novel pixel-sampling method that significantly reduces the processing time of the normalization algorithm. We demonstrate the performance of our architecture using measurements from images of different sizes and scanner formats that belong to four different datasets. The results show that our optimizations achieve up to 58x speedup compared to a baseline implementation. We also prove the scalability of our system by showing that the processing time scales almost linearly with the amount of tissue pixels present in the image. Furthermore, we show that the output of the normalization algorithm can be adversely affected when the input images include artifacts. To address this issue, we enhance the stain normalization pipeline by introducing a parameter cross-checking technique that automatically detects the distortion of the algorithm's critical parameters. To assess the robustness of the proposed method we employ a machine learning (ML) pipeline that classifies images for detection of prostate cancer. The results show that the enhanced normalization algorithm increases the classification accuracy of the ML pipeline in the presence of poor-quality input images. For an exemplary ML pipeline, our new method increases the accuracy on an unseen dataset from 0.79 to 0.87. Frontiers Media S.A. 2019-09-30 /pmc/articles/PMC6778842/ /pubmed/31632974 http://dx.doi.org/10.3389/fmed.2019.00193 Text en Copyright © 2019 Anghel, Stanisavljevic, Andani, Papandreou, Rüschoff, Wild, Gabrani and Pozidis. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Anghel, Andreea Stanisavljevic, Milos Andani, Sonali Papandreou, Nikolaos Rüschoff, Jan Hendrick Wild, Peter Gabrani, Maria Pozidis, Haralampos A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology |
title | A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology |
title_full | A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology |
title_fullStr | A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology |
title_full_unstemmed | A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology |
title_short | A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology |
title_sort | high-performance system for robust stain normalization of whole-slide images in histopathology |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778842/ https://www.ncbi.nlm.nih.gov/pubmed/31632974 http://dx.doi.org/10.3389/fmed.2019.00193 |
work_keys_str_mv | AT anghelandreea ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT stanisavljevicmilos ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT andanisonali ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT papandreounikolaos ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT ruschoffjanhendrick ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT wildpeter ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT gabranimaria ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT pozidisharalampos ahighperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT anghelandreea highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT stanisavljevicmilos highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT andanisonali highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT papandreounikolaos highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT ruschoffjanhendrick highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT wildpeter highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT gabranimaria highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology AT pozidisharalampos highperformancesystemforrobuststainnormalizationofwholeslideimagesinhistopathology |