Cargando…
Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy
INTRODUCTION: The stress fractures (SFs) are a common condition in athletes and military recruits, characterized by partial fracture caused by repetitive applications of stresses that are lower than the stress required to fracture the bone in a single loading. Fourier transform infrared (FTIR) spect...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778946/ https://www.ncbi.nlm.nih.gov/pubmed/31662967 http://dx.doi.org/10.1155/2019/1241452 |
_version_ | 1783456859003289600 |
---|---|
author | Mata-Miranda, Monica Maribel Guerrero-Ruiz, Melissa Gonzalez-Fuentes, Juan Ramon Hernandez-Toscano, Carlos Martin Garcia-Andino, Jesus Rafael Sanchez-Brito, Miguel Vazquez-Zapien, Gustavo Jesus |
author_facet | Mata-Miranda, Monica Maribel Guerrero-Ruiz, Melissa Gonzalez-Fuentes, Juan Ramon Hernandez-Toscano, Carlos Martin Garcia-Andino, Jesus Rafael Sanchez-Brito, Miguel Vazquez-Zapien, Gustavo Jesus |
author_sort | Mata-Miranda, Monica Maribel |
collection | PubMed |
description | INTRODUCTION: The stress fractures (SFs) are a common condition in athletes and military recruits, characterized by partial fracture caused by repetitive applications of stresses that are lower than the stress required to fracture the bone in a single loading. Fourier transform infrared (FTIR) spectroscopy gives information about the bone composition and also can determine the amount of a molecule. For this reason, the FTIR spectroscopy may be used as a tool for diagnosis of certain bone diseases related to the bone strength. In this research, we established the contributions of mineral and collagen properties to SF risk through FTIR spectroscopy, analyzing the biochemical profile differences between the healthy bone and the bone with an SF. MATERIALS AND METHODS: Previous written informed consent was obtained, and samples of the hip with an SF (n = 11) and healthy bone from the femur with traumatic fracture (n = 5) were obtained and analyzed employing FTIR spectroscopy and its biochemical mapping function. Then, using FTIR spectra and the map, the collagen content and ratios corresponding to matrix maturity, mineralization, carbonate substitution, acid phosphate substitution, and crystallinity were calculated. Moreover, a histopathological analysis through Masson's staining was conducted. RESULTS: The biochemical analysis showed that the bone with an SF presented a bone immaturity characterized by a higher content of collagen, lower matrix maturity, mineralization, carbonate and acid phosphate substitutions, and greater crystallinity compared to the healthy bone, being checked by the ratio analysis and biochemical mapping. Besides, Masson's stain showed a higher collagen content in the bone with an SF. CONCLUSIONS: The bone with an SF presented alterations in its biochemical composition, showing bone immaturity, which broadens the panorama of the condition to investigate future treatments or prophylactic techniques. |
format | Online Article Text |
id | pubmed-6778946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-67789462019-10-29 Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy Mata-Miranda, Monica Maribel Guerrero-Ruiz, Melissa Gonzalez-Fuentes, Juan Ramon Hernandez-Toscano, Carlos Martin Garcia-Andino, Jesus Rafael Sanchez-Brito, Miguel Vazquez-Zapien, Gustavo Jesus Biomed Res Int Research Article INTRODUCTION: The stress fractures (SFs) are a common condition in athletes and military recruits, characterized by partial fracture caused by repetitive applications of stresses that are lower than the stress required to fracture the bone in a single loading. Fourier transform infrared (FTIR) spectroscopy gives information about the bone composition and also can determine the amount of a molecule. For this reason, the FTIR spectroscopy may be used as a tool for diagnosis of certain bone diseases related to the bone strength. In this research, we established the contributions of mineral and collagen properties to SF risk through FTIR spectroscopy, analyzing the biochemical profile differences between the healthy bone and the bone with an SF. MATERIALS AND METHODS: Previous written informed consent was obtained, and samples of the hip with an SF (n = 11) and healthy bone from the femur with traumatic fracture (n = 5) were obtained and analyzed employing FTIR spectroscopy and its biochemical mapping function. Then, using FTIR spectra and the map, the collagen content and ratios corresponding to matrix maturity, mineralization, carbonate substitution, acid phosphate substitution, and crystallinity were calculated. Moreover, a histopathological analysis through Masson's staining was conducted. RESULTS: The biochemical analysis showed that the bone with an SF presented a bone immaturity characterized by a higher content of collagen, lower matrix maturity, mineralization, carbonate and acid phosphate substitutions, and greater crystallinity compared to the healthy bone, being checked by the ratio analysis and biochemical mapping. Besides, Masson's stain showed a higher collagen content in the bone with an SF. CONCLUSIONS: The bone with an SF presented alterations in its biochemical composition, showing bone immaturity, which broadens the panorama of the condition to investigate future treatments or prophylactic techniques. Hindawi 2019-09-22 /pmc/articles/PMC6778946/ /pubmed/31662967 http://dx.doi.org/10.1155/2019/1241452 Text en Copyright © 2019 Monica Maribel Mata-Miranda et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mata-Miranda, Monica Maribel Guerrero-Ruiz, Melissa Gonzalez-Fuentes, Juan Ramon Hernandez-Toscano, Carlos Martin Garcia-Andino, Jesus Rafael Sanchez-Brito, Miguel Vazquez-Zapien, Gustavo Jesus Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy |
title | Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy |
title_full | Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy |
title_fullStr | Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy |
title_full_unstemmed | Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy |
title_short | Characterization of the Biological Fingerprint and Identification of Associated Parameters in Stress Fractures by FTIR Spectroscopy |
title_sort | characterization of the biological fingerprint and identification of associated parameters in stress fractures by ftir spectroscopy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778946/ https://www.ncbi.nlm.nih.gov/pubmed/31662967 http://dx.doi.org/10.1155/2019/1241452 |
work_keys_str_mv | AT matamirandamonicamaribel characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy AT guerreroruizmelissa characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy AT gonzalezfuentesjuanramon characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy AT hernandeztoscanocarlosmartin characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy AT garciaandinojesusrafael characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy AT sanchezbritomiguel characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy AT vazquezzapiengustavojesus characterizationofthebiologicalfingerprintandidentificationofassociatedparametersinstressfracturesbyftirspectroscopy |