Cargando…

“Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era

Magnetic resonance imaging provides a sea of quantitative and semi-quantitative data. While radiation oncologists already navigate a pool of clinical (semantic) and imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator devices and increasing interest in MRI-guided radiot...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiser, Kendall J., Smith, Benjamin D., Wang, Jihong, Fuller, Clifton D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779062/
https://www.ncbi.nlm.nih.gov/pubmed/31632914
http://dx.doi.org/10.3389/fonc.2019.00983
_version_ 1783456876824887296
author Kiser, Kendall J.
Smith, Benjamin D.
Wang, Jihong
Fuller, Clifton D.
author_facet Kiser, Kendall J.
Smith, Benjamin D.
Wang, Jihong
Fuller, Clifton D.
author_sort Kiser, Kendall J.
collection PubMed
description Magnetic resonance imaging provides a sea of quantitative and semi-quantitative data. While radiation oncologists already navigate a pool of clinical (semantic) and imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator devices and increasing interest in MRI-guided radiotherapy (MRIgRT), including adaptive MRIgRT. The variety of MR sequences (of greater complexity than the single parameter Hounsfield unit of CT scanning routinely used in radiotherapy), the workflow of adaptive fractionation, and the sheer quantity of daily images acquired are challenges for scaling this technology. Biomedical informatics, which is the science of information in biomedicine, can provide helpful insights for this looming transition. Funneling MRIgRT data into clinically meaningful information streams requires committing to the flow of inter-institutional data accessibility and interoperability initiatives, standardizing MRIgRT dosimetry methods, streamlining MR linear accelerator workflow, and standardizing MRI acquisition and post-processing. This review will attempt to conceptually ford these topics using clinical informatics approaches as a theoretical bridge.
format Online
Article
Text
id pubmed-6779062
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-67790622019-10-18 “Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era Kiser, Kendall J. Smith, Benjamin D. Wang, Jihong Fuller, Clifton D. Front Oncol Oncology Magnetic resonance imaging provides a sea of quantitative and semi-quantitative data. While radiation oncologists already navigate a pool of clinical (semantic) and imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator devices and increasing interest in MRI-guided radiotherapy (MRIgRT), including adaptive MRIgRT. The variety of MR sequences (of greater complexity than the single parameter Hounsfield unit of CT scanning routinely used in radiotherapy), the workflow of adaptive fractionation, and the sheer quantity of daily images acquired are challenges for scaling this technology. Biomedical informatics, which is the science of information in biomedicine, can provide helpful insights for this looming transition. Funneling MRIgRT data into clinically meaningful information streams requires committing to the flow of inter-institutional data accessibility and interoperability initiatives, standardizing MRIgRT dosimetry methods, streamlining MR linear accelerator workflow, and standardizing MRI acquisition and post-processing. This review will attempt to conceptually ford these topics using clinical informatics approaches as a theoretical bridge. Frontiers Media S.A. 2019-09-30 /pmc/articles/PMC6779062/ /pubmed/31632914 http://dx.doi.org/10.3389/fonc.2019.00983 Text en Copyright © 2019 Kiser, Smith, Wang and Fuller. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Kiser, Kendall J.
Smith, Benjamin D.
Wang, Jihong
Fuller, Clifton D.
“Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era
title “Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era
title_full “Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era
title_fullStr “Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era
title_full_unstemmed “Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era
title_short “Après Mois, Le Déluge”: Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era
title_sort “après mois, le déluge”: preparing for the coming data flood in the mri-guided radiotherapy era
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779062/
https://www.ncbi.nlm.nih.gov/pubmed/31632914
http://dx.doi.org/10.3389/fonc.2019.00983
work_keys_str_mv AT kiserkendallj apresmoisledelugepreparingforthecomingdatafloodinthemriguidedradiotherapyera
AT smithbenjamind apresmoisledelugepreparingforthecomingdatafloodinthemriguidedradiotherapyera
AT wangjihong apresmoisledelugepreparingforthecomingdatafloodinthemriguidedradiotherapyera
AT fullercliftond apresmoisledelugepreparingforthecomingdatafloodinthemriguidedradiotherapyera