Cargando…
IHC Color Histograms for Unsupervised Ki67 Proliferation Index Calculation
Automated image analysis tools for Ki67 breast cancer digital pathology images would have significant value if integrated into diagnostic pathology workflows. Such tools would reduce the workload of pathologists, while improving efficiency, and accuracy. Developing tools that are robust and reliable...
Autores principales: | Geread, Rokshana S., Morreale, Peter, Dony, Robert D., Brouwer, Emily, Wood, Geoffrey A., Androutsos, Dimitrios, Khademi, April |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779686/ https://www.ncbi.nlm.nih.gov/pubmed/31632956 http://dx.doi.org/10.3389/fbioe.2019.00226 |
Ejemplares similares
-
piNET–An Automated Proliferation Index Calculator Framework for Ki67 Breast Cancer Images
por: Geread, Rokshana Stephny, et al.
Publicado: (2020) -
Assessing the Impact of Color Normalization in Convolutional Neural Network-Based Nuclei Segmentation Frameworks
por: Pontalba, Justin Tyler, et al.
Publicado: (2019) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019) -
IHC-based Ki67 as response biomarker to tamoxifen in breast cancer window trials enrolling premenopausal women
por: Joosten, Stacey E. P., et al.
Publicado: (2021) -
Micro Versus Macro – The Effect of Environmental Confinement on Cellular Nanoparticle Uptake
por: Damle, Viraj G., et al.
Publicado: (2020)