Cargando…

Protective Effect Conferred by Isometric Preconditioning Against Slow- and Fast-Velocity Eccentric Exercise-Induced Muscle Damage

We investigated if the same isometric preconditioning protocol (IPP) attenuates the magnitude of muscle damage induced by different maximal eccentric exercise protocols in the elbow flexors. Sixty-four untrained men were assigned to either two experimental or two control groups. Participants in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Barreto, Renan Vieira, de Lima, Leonardo Coelho Rabello, Greco, Camila Coelho, Denadai, Benedito Sérgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779724/
https://www.ncbi.nlm.nih.gov/pubmed/31632283
http://dx.doi.org/10.3389/fphys.2019.01203
Descripción
Sumario:We investigated if the same isometric preconditioning protocol (IPP) attenuates the magnitude of muscle damage induced by different maximal eccentric exercise protocols in the elbow flexors. Sixty-four untrained men were assigned to either two experimental or two control groups. Participants in the experimental groups performed an IPP prior to either slow (60°·s(−1) – ISO + ECC-S) or fast (180°·s(−1) – ISO + ECC-F) maximal eccentric contractions (MaxECC). Subjects in the control groups performed slow (ECC-S) or fast (ECC-F) MaxECC without IPP. Maximal isokinetic concentric torque (MVC), muscle soreness (SOR), and muscle thickness (MT) were assessed before, immediately after, and 1–4 days following the MaxECC. Significant (p < 0.05) group vs. time interactions were found for MVC (F = 4,517), SOR (F = 6,318), and MT (F = 1,863). The ECC-S group presented faster (p < 0.05) recovery of MVC and MT and less (p < 0.05) SOR at 96 h post-MaxECC compared with ECC-F group. No significant differences in MVC and MT were found between ECC-S and ECC-F groups following MaxECC. The ISO + ECC-S group showed faster (p < 0.05) recovery of MVC and SOR compared to the ECC-S group. No significant differences were evident between ISO + ECC-S and ECC-S in any variable. The ISO + ECC-F group showed faster (p < 0.05) recovery of all assessed variables compared with the ECC-F group. MVC was greater (p < 0.05) at 48–72 h, and SOR was less (p < 0.05) at 48–96 h in the ISO + ECC-F compared to the ECC-F group. No significant differences were evident between ISO + ECC-S and ISO + ECC-F for any variable. These results show that the IPP accelerated recovery of MVC and SOR for the slow-eccentric exercise condition and attenuated strength loss and SOR in addition to faster recovery of all assessed variables for the fast-eccentric exercise condition. Therefore, the IPP can be used as a strategy to attenuate and accelerate recovery of muscle damage induced by different-velocity eccentric exercises, resulting in greater protection against muscle damage induced by faster velocity.