Cargando…
Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook
Although most patients who experience a first-episode of psychosis achieve remission of positive psychotic symptoms, relapse is common. Existing relapse evaluation strategies are limited by their reliance on direct and timely contact with professionals, and accurate reporting of symptoms. A method b...
Autores principales: | Birnbaum, M. L., Ernala, S. K., Rizvi, A. F., Arenare, E., R. Van Meter, A., De Choudhury, M., Kane, J. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779748/ https://www.ncbi.nlm.nih.gov/pubmed/31591400 http://dx.doi.org/10.1038/s41537-019-0085-9 |
Ejemplares similares
-
O9.2. IDENTIFYING PSYCHOTIC SYMPTOMS AND PREDICTING RELAPSE THROUGH SOCIAL MEDIA
por: Birnbaum, Michael, et al.
Publicado: (2018) -
Identifying emerging mental illness utilizing search engine activity: A feasibility study
por: Birnbaum, Michael L., et al.
Publicado: (2020) -
Identifying signals associated with psychiatric illness utilizing language and images posted to Facebook
por: Birnbaum, Michael L., et al.
Publicado: (2020) -
Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study
por: Birnbaum, Michael Leo, et al.
Publicado: (2020) -
Clinician Perspectives on Using Computational Mental Health Insights From Patients’ Social Media Activities: Design and Qualitative Evaluation of a Prototype
por: Yoo, Dong Whi, et al.
Publicado: (2021)