Cargando…
Deep Learning: A Review for the Radiation Oncologist
Introduction: Deep Learning (DL) is a machine learning technique that uses deep neural networks to create a model. The application areas of deep learning in radiation oncology include image segmentation and detection, image phenotyping, and radiomic signature discovery, clinical outcome prediction,...
Autores principales: | Boldrini, Luca, Bibault, Jean-Emmanuel, Masciocchi, Carlotta, Shen, Yanting, Bittner, Martin-Immanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779810/ https://www.ncbi.nlm.nih.gov/pubmed/31632910 http://dx.doi.org/10.3389/fonc.2019.00977 |
Ejemplares similares
-
Social media for radiation oncologists: A practical primer
por: Bibault, Jean-Emmanuel, et al.
Publicado: (2017) -
Information Technology in Radiation Oncology – A Brave New World?
por: Bittner, Martin-Immanuel
Publicado: (2013) -
Editorial: Investigations into the potential benefits of artificial intelligence and deep learning to surgical oncologists
por: Williams, Simon C., et al.
Publicado: (2023) -
Basic cancer immunology for radiation oncologists
por: Sia, Joseph, et al.
Publicado: (2022) -
Machine Learning for Head and Neck Cancer: A Safe Bet?—A Clinically Oriented Systematic Review for the Radiation Oncologist
por: Volpe, Stefania, et al.
Publicado: (2021)